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ABSTRACT
A model based approach called k-t BLAST/SENSE, has

drawn significant attentions from MR imaging community

due to its improved spatio-temporal resolution. Recently, we

showed that k-t BLAST/SENSE corresponds to the special

case of a new dynamic MRI algorithm called k-t FOCUSS

that is asymptotically optimal from compressed sensing per-

spective. The k-t FOCUSS exploits the sparsity of x-f support

of dynamic scene and converts imaging problem into an L1

minimization problem that can be solved using FOCal Un-

derdetermined System Solver (FOCUSS). In this paper, we

extend the idea of k-t FOCUSS and introduce motion estima-

tion and compensation (ME/MC) based prediction step and

residual encoding step. The ME/MC based prediction step

exploits the temporal redundancies using the motion field

estimation and provides much sparser residual signals. The

sparse residual signal can then be effectively encoded us-

ing much smaller number of k-t samples. Simulation results

demonstrate that high resolution dynamic MR images can be

accurately obtained even from very limited data samples.

Index Terms— compressed sensing, k-t FOCUSS, k-t

BLAST/SENSE, MPEG video, motion estimation/compensation

1. INTRODUCTION

In dynamic MRI, the spatio-temporal resolution is the most

important quality measure. Basically, MRI acquires data on

Fourier domain called k-space. Hence, if some data acquisi-

tion steps are skipped for high acceleration, aliasing artifacts

often appears due to Nyquist sampling limit. In order to re-

solve this problem, there have been many investigations.

Recently, a model-based approach k-t BLAST/SENSE

has been proposed that outperforms the classical dynamic

MR methods [1]. Specifically, this uses a diagonal form of

the signal covariance matrix obtained from training data and

impose it as a priori information for the acquisition phase.

Another recent development in dynamic MRI has taken

place by introduction of the “compressed sensing (CS)”
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theroy from signal processing community [2]. According

to the compressed sensing theory, perfect reconstruction is

possible even from sampling rates dramatically smaller than

the Nyquist sampling limit, as long as the non-zero spectral

signal is sparse and the samples are obtained with incoher-
ent basis [2]. Moreover, even if the signal is not sparse, we

can still recover the significant features of the signals if the

signals are compressible. The optimal sparse solutions can

be then obtained using computationally feasible L1 mini-

mization algorithms rather than resorting to computationally

expensive combinatorial optimization algorithms [2]. Hence,

the compressed sensing theory has great potential.

Interestingly, even though the aforementioned two meth-

ods appear drastically different, a close look at the algorithms

reveals striking similarity between them. Specifically, Jung

et al [3] showed that the diagonal signal covariance ma-

trix in k-t BLAST/SENSE is indeed originated from FOCal

Underdetermined System Solver (FOCUSS)[4] originally de-

signed to obtain a sparse solution by successively solving

quadratic optimization problems. Furthermore, they showed

that the k-t BLAST/SENSE corresponds to the first iteration

of so called k-t FOCUSS that is asymptotically optimal from

compressed sensing perspective. The implementation of k-t

FOCUSS is so simple that using only a few additional FO-

CUSS iterations the remaining residual aliasing artifacts of

k-t BLAST/SENSE can be effectively suppressed and high

spatio-temporal resolution can be achieved [3]. This sug-

gests that k-t BLAST/SENSE indeed has very close relation

with the compressed sensing theory even though it was not

revealed in original k-t BLAST/SENSE.

The main contribution of this paper is an extension of k-t

FOCUSS to a more general framework with prediction and

residual encoding, where the prediction approximately esti-

mates the dynamic images and the residual encoding takes

care of the remaining residual signals. As a new prediction

method, a motion estimation and compensation scheme is

proposed, which estimates the correlation between the frames

using motion vector similar to video coding. This method sig-

nificantly sparsifies the residual signal compared to the tem-

poral average often used in k-t BLAST/SENSE or even in
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k-t FOCUSS. Furthermore, using more sophisticated random

sampling pattern and optimized temporal transform, the resid-

ual signal can be effectively estimated from very small num-

ber of random k-t samples by exploiting the sparsity.

2. THEORY
2.1. Compressed Sensing
Recent theory of compressed sensing tells us that the accu-

rate reconstruction of unknown signal is possible even from

sampling rates dramatically smaller than the Nyquist sam-

pling limit as long as the signal is sparse in some incoher-

ent basis [2]. Furthermore, the optimal sparse solution can

be obtained by solving the L1 minimization [2] rather than

complicated combinatorial optimization. Therefore, in order

to apply the compressed sensing theory for dynamic MRI, the

unknown signal should be sparsified in some basis. We can

easily use temporal Fourier transform to make signal sparse

for dynamic cardiac MR imaging because heart has periodic

motion. Then, the optimal dynamic MR imaging solution

from the compressed sensing perspective can be obtained by

imposing a sparsity of the solution using L1 norm:

minimize ||ρ||1
subject to ||υ − FyFtρ||2 ≤ ε (1)

where ρ and υ represent sparse x-f image to be reconstructed

and k-t measurements, respectively. Here, Fy and Ft corre-

spond to Fourier transform along spatial and temporal direc-

tion, ε denotes the noise level, || · ||1 and || · ||2 denote the L1

and L2 norm, respectively.

2.2. k-t FOCUSS with Prediction/Residual Encoding
k-t FOCUSS was developed to address the L1 minimization

problem (Eq. (1)) using reweighted quadratic optimization

technique [3]. This paper generalizes the original formulation

in [3] in a more general prediction/residual encoding frame-

work.

More specifically, the unknown signal ρ can be decom-

posed into the prediction ρ0 and the residual signal Δρ:

ρ = ρ0 + Δρ . (2)

Our goal is now try to impose the sparsity to the residual sig-

nal Δρ rather than the total signal ρ. Specifically, we are

interested in solving the following compressed sensing prob-

lem:

minimize ||Δρ||1
subject to ||υ − Fρ0 − FΔρ||2 ≤ ε (3)

where F = FxFt. The k-t FOCUSS solves Eq. (3) by suc-

cessively solving reweighted quadratic optimization to find

Δρ = Wq.

min ||ql||2, subject to ||υ − Fρ0 − FWlql||2 ≤ ε . (4)

Then, the update equation at each iteration is given by:

ρl+1 = ρ0 + ΘlFH
(
FΘlFH + λI

)−1
(υ − Fρ0) ,

where Θl = WlWH
l . (5)

Here, Wl is the diagonal weighting matrix updated with the

solution from the previous step:

Wl =

⎛
⎜⎝

|Δρl(1)|p · · · 0
...

. . .
...

0 · · · |Δρl(N)|p

⎞
⎟⎠ , 1/2 ≤ p ≤ 1 .

(6)

Note that k-t FOCUSS asymptotically solves L1 minimiza-

tion problem by setting p = 0.5 in Eq. (6) [3]. In k-t FO-

CUSS, the optimal prediction ρ0 should make the residual

signal Δρ as sparse as possible to accelerate the data acqui-

sition. However, to obtain the prediction ρ0, we need addi-

tional k-t samples. This illustrates the fundamental trade-off

between the prediction and residual encoding, which should

be carefully studied for best performance.

Such trade-off between prediction/residual encoding has

an important parallel in video compression such as MPEG

(Motion Picture Expert Group) [5], which exploits the tem-

poral redundancies to compress the video. A simplified cod-

ing structure of MPEG without bidirectional (B) picture is

constituted in Figure 1 (a). There are two types of frames.

First, the intra pictures (I) are obtained using discrete co-

sine transform (DCT) by exploiting the spatial correlation as

done in still image compression [5]. Then, the predicted pic-

tures (P) are coded using past reference frames including in-

tra pictures and previously predicted pictures. The P frame

can compress the data significantly by exploiting the tempo-

ral redundancies using motion estimation and compensation

(ME/MC). The remaining residual signals that cannot be es-

timated from ME/MC are then encoded using DCT. Now, we

can observe the fundamental trade-off between prediction and

residual coding. As the reference I frame becomes more ac-

curate and the motion estimation accuracy increases using

very dense motion vector fields, the residual signal can be

significantly sparsified. But, such accurate encoding of I and

motion fields will introduce additional coding bits. On the

contrary, if smaller number of bits are used for prediction,

the residual signal becomes large, requiring significant bits

for residual coding. Therefore, the optimal bit allocation for

I frame coding, ME/MC and residual coding has been a big

issue in video compression [5].

This paper presents a new prediction/residual encoding

scheme based on ME/MC to optimize data allocation be-

tween prediction and residual encoding and improve the

performance of our k-t FOCUSS [3].
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2.3. Implementation of Prediction/Residual Encoding
Recall that the (l + 1)-th update of our k-t FOCUSS frame-

work can be summarized as follows:

ρl+1 = ρ0︸︷︷︸
prediction

+ΘlFH
(
FΘlFH + λI

)−1
(υ − Fρ0)︸ ︷︷ ︸

residual encoding

, (7)

where Θl = WlWH
l . This section explains how to optimize

the prediction and residual encoding to improve the recon-

struction quality of the k-t FOCUSS.

2.3.1. Motion Estimation / Motion Compensation

In section 2.2, the trade-off between prediction encoding and

residual encoding in video coding was briefly mentioned.

In video coding, the number of motion vectors for ME/MC

should be limited since these information should be also

transmitted using additoinal bits. However, in dynamic MRI

we are free to choose many number of motion vectors for

ME/MC method as long as it can predict ρ0 more accurately.

In order to exploit ME/MC, at least one reference frame

is required. The concept of reference frame is not new in

dynamic MRI. For example, Liang et al already proposed

dynamic imaging method called RIGR (Reduced-encoding

Imaging by Generalized-series Reconstruction) that exploits

the two fully encoded reference frames [6].

In our framework, the reference frame/frames can do the

same role with I frames in MPEG coding. However, in order

to calculate motion vectors more accurately, dynamic frames

that have high correlation with the reference frames are nec-

essary. However, for highly accelerated MR acquisition, di-

rect Fourier inversion of the down-sampled k-t sample does

not provide high resolution dynamic frames, which makes the

motion estimation inaccurate. Interestingly, this problem can

be overcome by recursively applying our k-t FOCUSS algo-

rithm. More specifically, the original k-t FOCUSS results that

uses temporal average as a prediction can be used first to pro-

vide intermediate quality reconstruction. Then, motion esti-

mation is done using the fully sampled references frames and

the k-t FOCUSS reconstructed frames. Using the estimated

motion vectors, we apply another step of k-t FOCUSS algo-

rithm with the motion compensated prediction ρ0. Such re-

cursive application of k-t FOCUSS improves the reconstruc-

tion quality significantly.

In order to obtain the motion vectors, Mean Absolute Dif-

ference (MAD) between the specified blocks of the reference

frames and dynamic frames is calculated as shown in Figure 1

(b). When the search area is determined, the motion vectors

for each blocks on individual dynamic frame are calculated

by minimizing the MAD as shown in Figure 1 (b). These pro-

cesses to obtain the motion vectors are called ME. Then, the

dynamic frames are newly estimated during MC using the es-

timated motion vectors. The MC process is done on image

domain using only the reference frames and motion vectors.

The dynamic images are reconstructed by simply relocating

the specified blocks of the reference frames according to the

estimated motion vectors. Suppose the motion vector for the

(x, y, t) coordinate be [i, j], then MC is following.

σ0(x, y, t) = σref (x + i, y + j) , (8)

where σ0 and σref indicate the MC reconstruction and ref-

erence frames, respectively. Especially, when two reference

frames are available, MC can be performed by the linear in-

terpolation of both matched blocks on both reference frames

according to the time distance as shown in Figure 1 (c). Sup-

pose that two reference frames are measured on time 0 and

T , and the motion vectors for a certain pixel positioned on

(x, y, t) with respect to each reference frame are (i1, j1) and

(i2, j2), respectively. Then, MC is following.

σ0(x, y, t) = tσref1(x1,y1)+(T−t)σref2(x2,y2)
T

where x1 = x + i1, y1 = y + j1,

x2 = x + i2, y2 = y + j2, (9)

where σref1 and σref2 represent the measured reference

frames on time 0 and T .

Fig. 1. (a) MPEG coding, (b) Motion Estimation (ME), and

(c) Motion Compensation (MC)

There are many advantages using ME/MC to obtain the

prediction term ρ0. First, the finer structure of dynamic im-

ages can be obtained without blurring because MC just relo-

cates the corresponding pixels of the fully sampled reference

frames. Second, k-t samples are not fully allocated for pre-

diction step because the estimation is performed on image

domain rather than frequency domain. Therefore, the most

of the k-t samples can be reused for the following residual

encoding step.

2.3.2. Residual Encoding

The main focus of residual encoding step is to efficiently es-

timate the residual signal using small number of k-t samples.
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This goal can be achieved based on compressed sensing. In

order to employ compressed sensing safely, random sampling

pattern is used on k-t space resulting in highly incoherent ba-

sis as shown in Figure 2.

Fig. 2. Random sampling pattern

Since the prediction step provides sparse residual, k-t FO-

CUSS can effectively exploit the sparsity of the residual sig-

nal. However, there are still many rooms to improve the resid-

ual encoding. In general, the temporal transform Ft in Eq. (1)

is not necessarily Fourier transform. Karhunen-Loeve Trans-

form (KLT) along temporal direction can be also used as an

another option of sparsifying transform. As a spatial trans-

form, wavelet transform can be applied along spatial direction

as well to make signal much sparser.

3. SIMULATION RESULTS
For comparative study, we implemented the new k-t FOCUSS

using ME/MC prediction, k-t BLAST [1] and k-t FOCUSS

with temporal average [3]. We have acquired 25 frames of

full k-space data from a cardiac cine of a patient using a 1.5

T Philips scanner at Yonsei University Medical Center. The

field of view (FOV) was 345.00 × 270.00mm2, and the ma-

trix size for scanning was 256 × 220, which corresponds to

256 samples in frequency encoding and 220 phase encoding

steps. Then, we have compared the reconstruction results

for each method at the acceleration factor of 11. Figs. 3(a)

and (b) shows the results for k-t BLAST and k-t FOCUSS

with ME/MC. k-t FOCUSS with ME/MC (Fig. 3(b)) signif-

icantly outperforms the k-t BLAST results in Fig. 3(a). The

aliasing artifacts shown in Figs. 3(a)(indicated with white

arrows) are greatly reduced in (b). The difference images

also demonstrates that the estimation error has been signif-

icantly reduced. Furthermore, the calculated mean square

error (MSE) in (c) clearly shows the reduced error in k-t FO-

CUSS with ME/MC prediction, quantitatively. Additionally,

we plotted MSE for the result of k-t FOCUSS with temporal

average in (c). k-t FOCUSS with ME/MC clearly has the

smallest MSE over all frames.

4. CONCLUSION
This paper described a generalization of k-t FOCUSS that is

optimal from compressed sensing perspective. The k-t FO-

CUSS reconstruction consists of two terms; one from pre-

diction, and the other from residual encoding. We proposed

a new prediction scheme based on ME/MC similar to video.

This approach tries to decorrelate the temporal correlation be-

tween the frames using motion estimation in image domain.

(a) (b)

(d)

Fig. 3. (a) k-t BLAST and (b) k-t FOCUSS with ME/MC.

(c) plots MSE for k-t BLAST, original k-t FOCUSS, and k-t

FOCUSS with ME/MC.

Experimental results confirmed that high spatio-temporal res-

olution can be achieved using k-t FOCUSS with ME/MC pre-

diction even from severely undersampled k-t measurements.
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