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Performance prediction for individual recognition by gait
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Abstract

Existing gait recognition approaches do not give their theoretical or experimental performance predictions. There-

fore, the discriminating power of gait as a feature for human recognition cannot be evaluated. In this paper, we first

propose a kinematic-based approach to recognize human by gait. The proposed approach estimates 3D human walking

parameters by performing a least squares fit of the 3D kinematic model to the 2D silhouette extracted from a monocular

image sequence. Next, a Bayesian-based statistical analysis is performed to evaluate the discriminating power of

extracted stationary gait features. Through probabilistic simulation, we not only predict the probability of correct rec-

ognition (PCR) with regard to different within-class feature variance, but also obtain the upper bound on PCR with

regard to different human silhouette resolution. In addition, the maximum number of people in a database is obtained

given the allowable error rate. This is extremely important for gait recognition in large databases.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Model-based object recognition is concerned

with searching for a match to associate compo-

nents of the given data with corresponding param-

eters of the object model (Grimson, 1990). The

approaches can be classified as global matching

or local feature matching. Global matching (e.g.,
0167-8655/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2004.09.011

* Corresponding author. Tel.: +1 9097873954; fax: +1

9097873188.

E-mail addresses: jhan@cris.ucr.edu (J. Han), bhanu@cris.ucr.

edu (B. Bhanu).
silhouette image matching) approaches consider

finding a transformation from a model to an image
while feature matching approaches involve estab-

lishing a correspondence between local features

extracted from the given data and corresponding

local features of the object model.

Boshra and Bhanu (2000) present a method for

predicting fundamental performance of object rec-

ognition. They assume that both scene data and

model objects are represented by 2D point features
and a data/model match is evaluated using a vote-

based criterion. Their method considers data dis-

tortion factors such as uncertainty, occlusion,
ed.
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and clutter, in addition to model similarity. This is

unlike previous approaches, which consider only

a subset of these factors. However, their assump-

tions make their method only applicable to local

feature matching and not to global matching.
In our proposed approach of human recogni-

tion by kinematic-based gait analysis, we use

global matching because we only have the global

human silhouette information before matching.

The detailed information for different body parts

is obtained after matching. Next, we carry out

Bayesian based statistical analysis to evaluate the

discriminating power of various features. We
address the prediction problem in the context of

an object recognition task as follows: (1) scene

data are represented by 2D regions where the

region pixels are discretized at some resolution,

and model objects are represented by 3D volumes;

(2) an instance of a model object in the scene data

is assumed to be obtained by applying a 3D to 2D

transformation to the object; (3) the matching cri-
terion is based on Bayesian theory.
2. Motivation and contributions

Current human recognition methods, such as

fingerprints, face or iris biometrics, generally

require a cooperative subject, views from certain
aspects and physical contact or close proximity.

These methods cannot reliably recognize non-

cooperating individuals at a distance in real-

world changing environmental conditions. More-

over, in many applications of personnel identifi-

cation, many established biometrics can be

obscured. Gait, which concerns recognizing indi-

viduals by the way they walk, can be used as
a biometric without the above-mentioned dis-

advantages.

As a new biometrics, gait also has some limita-

tions. Gait can be affected by clothing, shoes, or

environmental conditions. In addition, special

physical conditions such as injury can also change

people�s walking style. Unlike fingerprint and

iris, gait cannot be regarded as a unique charac-
teristic for each person. Although the large gait

variation of the same person under different con-

ditions reduces the discriminating power of gait
as a biometric, the inherent property of gait still

makes it irreplaceable in visual surveillance

applications.

In recent years, some approaches have already

been employed in automatic gait recognition (i.e.,
human recognition by gait). Niyogi and Adelson

(1994) make an initial attempt in a spatiotemporal

(XYT) volume. They first find the bounding con-

tours of the walker, and then fit a simplified stick

model on them. A characteristic gait pattern in

XYT is generated from the model parameters

for recognition. Little and Boyd (1998) propose

a model-free approach making no attempt to
recover a structural model of human motion. In-

stead they describe the shape of the motion with

a set of features derived from moments of a dense

flow distribution. Similarly, He and Debrunner�s
(2000) approach detects a sequence of feature vec-

tors based on Hu�s moments of motion segmenta-

tion in each frame, and the individual is recognized

from the feature vector sequence using hidden
Markov models. To avoid a feature extraction

process which may reduce reliability, Murase and

Sakai (1996) propose a template matching method

to calculate the spatio-temporal correlation in a

parametric eigenspace representation for gait

recognition. Huang et al. (1999, 2001) extend this

approach by combining canonical space transfor-

mation (CST) with eigenspace transformation
(EST) for feature selection.

However, most existing gait recognition ap-

proaches only consider human walking frontopar-

allel to the image plane. Moreover, none of the

existing gait recognition approaches give their

theoretical or experiential performance prediction.

Therefore, we cannot evaluate the discriminating

power of gait as a feature for human recognition.
In this paper, we propose a kinematic-based ap-

proach to recognize human by gait, and carry

out Bayesian based statistical analysis to predict

recognition performance. The proposed approach

estimates 3D human walking parameters by per-

forming a least squares fit of the 3D kinematic

model to the 2D silhouette extracted from a

monocular image sequence. The gait features are
then generated from the estimated model para-

meters for human recognition. Our approach

eliminates the assumption of human walking
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frontoparallel to the image plane, which is desira-

ble in many gait recognition applications.
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Fig. 2. Body part geometric representation.
3. Technical approach

3.1. Human kinematic model

A human body is considered as an articulated

object, consisting of a number of body parts.

The body model adopted here is shown in Fig. 1,

where a circle represents a joint and a rectangle

represent a body part (N: neck, S: shoulder, E:
elbow, W: waist, H: hip, K: knee, and A: ankle).

Most joints and body part ends can be represented

as spheres, and most body parts can be represented

as cones. The whole human kinematic model is

represented as a set of cones connected by spheres

(Lin, 1999). Fig. 2 shows that most of the body

parts can be approximated well in this manner.

However, the head is approximated only crudely
by a sphere and the torso is approximated by a cyl-

inder with two spheroid ends.

3.2. Matching 3D model with 2D silhouette

The matching procedure determines a parame-

ter vector x so that the proposed 3D model fits
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Fig. 1. 3D human kinematic model.
the given 2D silhouette as well as possible. For

that purpose, two chained transformations trans-

form human body local coordinates (x,y,z) into

image coordinates (x 0,y 0) (Wachter and Nagel,

1997). The first transformation transforms local

coordinates into camera coordinates; while the sec-
ond transformation projects camera coordinates

into image coordinates.

Each 3D human body part is modeled by a cone

with two spheres si and sj at its ends, as shown in

Fig. 2 (Lin, 1999). Each sphere si is fully defined

by four scalar values, (xi,yi,zi, ri), which define its

location and size. Given these values for two sphe-

roid ends (xi,yi,zi, ri) and (xj,yj,zj, rj) of a 3D
human body part model, its projection P(ij) onto

the image plane is the convex hull of the two circles

defined by ðx0i; y 0i; r0iÞ and ðx0j; y0j; r0jÞ.
If the 2D human silhouette is known, we may

find the relative 3D body parts locations and ori-

entations with the knowledge of camera para-

meters. We propose a method to perform a least

squares fit of the 3D human model to the 2D
human silhouette. That is, to estimate the set of

sphere parameters x ¼ fxi : ðxi; yi; zi; riÞg by choos-

ing x to minimize

errorðx; IÞ ¼
X
x0 ;y02I

ðP xðx0; y0Þ � Iðx0; y0ÞÞ2; ð1Þ

where I is the silhouette binary image, Px is the

binary projection of the 3D human model to image

plane, and x 0, y 0 are image plane coordinates.

3.3. Model parameter selection

Human motion is very complex due to so many

degrees of freedom (DOFs). To simplify the

matching procedure, we use the following reason-

able assumptions:
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• the camera is stationary;

• people are walking before the camera at a

distance;

• people are moving in a constant direction;

• the swing direction of arms and legs parallels to
the moving direction.

According to these assumptions, we do not need

to consider the waist joint, and only need to

consider one DOF for each other joint. Therefore,

the elements of the parameter vector of the 3D

human kinematic model are defined as follows:

• Stationary parameters: radius ri(11): torso(3),

shoulder, elbow, hand, hip, knee, ankle, toe,

and head; length li(9): torso, inter-shoulder,

inter-hip, upper arm, lower arm, thigh, calf,

foot, and neck;

• Kinematic parameters: location (x,y)(2); angle

hi(11): neck, left upper arm, left lower arm, right

upper arm, right lower arm, left thigh, left calf,
left foot, right thigh, right calf, and right foot.

With 33 stationary and kinematic parameters,

the projection of the human model can be com-

pletely determined.

3.4. Silhouette extraction

Assuming that people are the only moving

objects in the scene, human silhouette can be

extracted by a simple background subtraction

method. Notice that an area cast into shadow of-

ten results in a significant change in intensity with-

out much change in chromaticity (Nadimi and

Bhanu, 2002). Given an image sequence contain-

ing moving people and the corresponding back-
ground image, for each frame Ii in the sequence,

the color value difference Dpi(x,y) =kpi(x,y) �
pb(x,y)k is computed for each pixel, where pi(x,y)
and pb(x,y) are RGB color values of the pixel at

(x,y) in the ith frame and background image,

respectively. The chromaticity is computed as

rc(x,y) = r(x,y)/(r(x,y) + g(x,y) + b(x,y)) and

gc(x,y) = g(x,y)/(r(x,y) + g(x,y) + b(x,y)). We
have Drci(x,y) = jrci(x,y) � rcb(x,y)j and

Dgci(x,y) = jgci(x,y) � gcb(x,y)j. Given thresholds

t1 and t2, if (Dpi(x,y) > t1) ^ ((Drci (x,y) > t2) _
(Dgci(x,y) > t2)), the pixel at (x,y) is determined

to be part of the moving objects; otherwise, it is

part of the background.

After the silhouette has been cleaned by a pre-

processing procedure, its height, width and cent-
roid can be easily extracted for motion analysis.

In addition, the moving direction of the walking

person is determined as follows:

h ¼
tan�1

f ðh1 � hN Þ
h1yN � hNy1

; if y1 > yN ;

tan�1
f ðh1 � hN Þ
h1yN � hNy1

þ p; otherwise:

8>><
>>:

ð2Þ

where f is the camera focal length, y1 and yN are

the horizontal centroid of the silhouette in the first

and Nth frame, and h1 and hN are the height of the
silhouette in the first and Nth frame.

3.5. Stationary parameter estimation

The stationary parameters include body part

length and joint radius. Notice that human walk-

ing is a cyclic motion, so an image sequence can

be divided into motion cycles and studied sepa-
rately. In each walking cycle, the silhouette with

minimum width means that the person stands

straight and that means the maximum occlusion;

the silhouette with maximum width means the

least occlusion and, therefore, it is more reliable.

To estimate the stationary parameters, we first

select several key frames (4 frames in our experi-

ments) which contain more reliable silhouettes,
and then perform matching procedure on the key

frames as a whole. The corresponding feature vec-

tor thus includes 20 common stationary parame-

ters and 13 * 4 individual kinematic parameters.

Next, we initialize these parameters according to

the human statistical information. Then, the set

of parameters is estimated from these initial

parameters by choosing a parameter vector x to
minimize the least square error in (1) with respect

to the kinematic constraints.

After the matching algorithm is converged, the

estimated stationary parameters so obtained are

used for kinematic parameter estimation of other

frames. At the same time, the estimated kinematic

parameters of key frames are used for prediction.

Because even the same person might walk at
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different speed, we normalize the estimated kine-

matic parameters of each walking cycle to a

fixed-length walking cycle, and the kinematic gait

features are generated from the normalized walk-

ing cycle.
4. Recognition performance prediction

In this paper, we only use features from sta-

tionary parameters for gait recognition. In the

above-mentioned stationary parameters, radius

parameters will be different if the same person is
in different clothes, and are thus not reliable for

recognition. Similarly, inter-shoulder and inter-

hip length parameters are not reliable when people

walk within a small angle along the direction per-

pendicular to the camera axis. The head region de-

pends on the hair style, which will change if the

view changes, and the head representation in our

model (sphere) is not precise in some cases, so the
estimated neck length is also not reliable. There-

fore, the feature vector selected for human recogni-

tion in our approach includes six elements: torso

length, upper arm length, lower arm length, thigh

length, calf length, and foot length, which are not

sensitive for recognizing human with different

clothes and different walking directions. In this pa-

per, we consider uncertainties for feature vectors in
two categories: uncertainties from all factors which

are algorithm dependent; uncertainties only from

different silhouette resolutions that are algorithm

independent.

4.1. Body part length distribution

To predict the performance of recognizing
human from body part lengths, we have to know

the prior length distributions of body parts over

human population. The data are called static

anthropometric data shown in Fig. 3. Although

the data are surveyed in the British population,

the predicted performance on it is applicable in

other scenarios. In general, the mean of body part

lengths will change but the standard deviation will
not change a lot in different populations. Assum-

ing that men and women have the same popula-

tion, the overall distributions for each of the
body part lengths are obtained. In this paper, we

only consider that the body part lengths are inde-

pendently distributed due to the absence of statis-

tical knowledge of their correlation.
4.2. Algorithm dependent performance prediction

Uncertainties of stationary gait features come

from various sources: image quantization error,

camera calibration error, silhouette segmentation

error, matching error, and body part occlusion.

To completely model the uncertainties of 3D body

part lengths, we have to model all the above-men-
tioned factors. This is a challenging task because it

is difficult to mathematically find the distribution

functions of uncertainties for all these factors. A

reasonable approach is to estimate the uncertain-

ties from training data. Assuming that feature vec-

tors obtained from a feature extraction algorithm

for a person are normally distributed in the given

feature space, we can easily obtain the within-class
variance from the experimental results on the

training data. Then, the obtained within-class var-

iance can be used to predict the recognition per-

formance of this algorithm.

According to the Bayes decision theory, an un-

known feature vector x is assigned to class xi if

P(xijx) > P(xjjx)"j5 i (Theodoridis and Kou-

troumbas, 1998). Let gi(x) = ln(p(xjxi)P(xi)), this
decision test becomes classifying x to xi if gi(x) >

gj(x)"j5 i.

Assuming the feature vector x for a person xi is

normally distributed in l-dimensional feature

space, the probability distributions for xi with

respect to x follows pðxjxiÞ ¼ 1

ð2pÞ
l
2j
P

i
j
1
2

�

expð� 1
2
ðx� liÞ

TP�1

i ðx� liÞÞ for i = 1, . . . ,M,

where li = E[x] is the mean value of the xi class
and

P
i is the l · l covariance matrix defined asP

i = E[(x � li)(x � li)
T]. Assume that

P
i =

P
for all i, maximum gi(x) implies minimum Maha-

lanobis distance: dM = (x � li)
TP�1(x�li). Thus,

feature vectors are assigned to classes according

to their Mahalanobis distances from the respective

mean vectors.

With the body part length distributions shown in
Fig. 3 and the within-class covariance matrix

P
of

the features obtained from a feature extraction
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Fig. 3. Anthropometric estimates for British adults aged 19–65 years (Pheasant, 1986).
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approach, we can predict its probability of correct

recognition (PCR) with regard to the number of
classes (people) in the database through a simula-

tion approach. In order to provide a direct under-

standing about how the within-class covariance

matrix affects the recognition performance, we as-

sume that
P

i = r2I for all i. This is a reasonable

assumption since all the features are lengths,

although different features may have slightly differ-

ent variances and may be slightly correlated. There-
fore, maximum gi(x) implies minimum Euclidean

distance: dE = kx � lik. Thus, feature vectors are

assigned to classes according to their Euclidean dis-

tances from the respective mean vectors. In this

way, we can obtain a plot directly indicating the

relationship between the predicted recognition per-

formance and the within-class standard deviation r.
4.3. Upper bound on PCR

We have considered the uncertainties that are

dependent on feature extraction algorithms. The
predicted performance indicates the discriminant
power of features extracted by different algo-

rithms, and these algorithms can therefore be com-
pared. However, we still do not know the upper

bound on PCR which can be achieved independent

of different algorithms. In the ideal case, image

quantization errors, i.e., the human silhouette res-

olution, is the only source of uncertainties. By ana-

lyzing the uncertainties given a fixed silhouette

resolution, we can obtain the upper bound on

PCR with regard to the number of classes (people)
in the database.

Given the silhouette resolution r, we can com-

pute the corresponding uncertainty from the body

part length L, view angles a and b, and the walking

direction c through two steps as shown in Fig. 4.

The first step is projecting the 3D length L to

length l 0 in the 2D continuous plane. We obtain

the projection of L on the plane at depth h which
is perpendicular to the camera axis as follows:

L0 ¼ Lðcos cþ sin c tanðaþ bÞÞ: ð3Þ

Fig. 4(a) only shows the case where a > 0, b > 0

and c > 0. We can easily derive the same equation
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in other cases. Then the corresponding length of L

in the continuous image plane can be computed

from the following equation:

l0 ¼ L0f =h ¼ L0r; ð4Þ
where f is the camera focal length.

The second step is the image quantization step

as shown in Fig. 4(b). For every 2D point falling

into a box in the continuous image plane, it�s loca-
tion is represented by the center location of the

box in the discrete image plane. Therefore, the cor-

responding length of L in the discrete image plane

is the discrete value p 0. From (3) and (4), we can

obtain the following results

P 0 ¼ p0h=f ¼ p0r; ð5Þ

P ¼ P 0

cos cþ sin c tanðaþ bÞ

¼ p0r
cos cþ sin c tanðaþ bÞ ; ð6Þ

where P is the corresponding length of p 0 in 3D

space and P 0 is the projection of P on the plane

at depth h which is perpendicular to the camera

axis. Therefore, the overall error in Fig. 4 is

P � L. Considering h� L in our applications,
we have b � 0, and (6) becomes

P ¼ p0r=ðcos cþ sin c tan aÞ: ð7Þ

Assuming the elements in the feature vector are

independent and identically distributed, the mini-
mum Euclidean distance classification criteria is

still effective.
Assuming that the quantization error is uni-

formly distributed in the r · r area, view angle a

is uniformly distributed from �45� to 45� of arc,
and walking direction c is uniformly distributed

from �30� to 30� of arc, we can predict the recog-

nition performance with regard to the number of

classes (people) in the database through a simula-

tion approach. The prediction results are upper

bounds on PCR with regards to different human

silhouette resolution values.
5. Experimental results

5.1. Performance prediction results

In our experiments, the performance prediction

results are obtained through simulation ap-

proaches. First we randomly generate the body
part lengths of M classes (people) according to

the distribution of different body part lengths.

Next, for each of the M classes, we randomly gen-

erate N instances for this class according to the

uncertainties in Section 4.2 or Section 4.3. Then,

the recognition rate is obtained by the minimum

Euclidean distance classification on the M · N in-

stances. After this experiment has been repeated
for K times, we can obtain the average recognition

rate. If N * K is large enough (N = 100 and

K = 100 in our experiments), this average recogni-

tion rate can be viewed as the predicted PCR of the

given algorithm (Fig. 5), and upper bounds on

PCR (Fig. 6). From these prediction results, we
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Table 1

Resolution (mm/pixel) for a 1675mm (population average

height) person occupying different vertical portions of the frame

with different video formats

Human

Silhouette

occupancy

VHS

(240 lines)

Digital video

(480 lines)

High

definition

(1080 lines)

100% of frame 6.98 3.49 1.55

75% of frame 9.31 4.65 2.07

50% of frame 13.96 6.98 3.10

25% of frame 27.92 13.96 6.20
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can find the corresponding maximum number of

people in a database given the allowable error rate.

Table 1 shows the corresponding resolution (mm/

pixel) for a 1675mm (population average height)

person occupying different vertical portions of
the frame with different video formats. It is shown

that most of these resolutions are good enough for

human recognition in databases of less than 500

people.

Our prediction results are based on the assump-

tion that the selected length features are independ-

ently distributed with an identical Gaussian

distribution. This assumption may not accurately
reflect different types of perturbations. In the fu-

ture, we will investigate the real feature distribu-

tion under different types of perturbations.

5.2. Recognition results on real data

The video data used in our experiments are real

human walking data recorded in an outdoor envi-
ronment, and there is only one walking person at
Fig. 7. Sample sequence
the same time. Eight different people walk along

different directions (within [�45�, 45�] along the

image plane). The size of image frames is 180 ·
240. In our experiments, we first manually divide

video data into single-cycle sequences, and then se-

lect 15 sequences from each person: 10 sequences

for training and 5 sequences for testing. Fig. 7

shows sequences in our gait database.

The least square matching algorithm is im-

plemented using a genetic algorithm. The fitness
s in our database.
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function is computed from the matching error in

(1). In the experiments, our approach achieves

60% recognition rate on the training dataset using

the Leave-One-Out method. The performance on

the testing data is 42% recognition rate. We also
compute the average standard deviation for each

person in the database which is 20mm, and the

corresponding predicted PCR is 87%. The correct

recognition rate in our approach is much lower

than this PCR because the PCR is computed on

the data distributed according to Fig. 3 while the

data in our database are not well distributed

due to the small data size, i.e., they have more sim-
ilarity. The human silhouette resolution in our

database varies from 20 to 30mm/pixel, and the

corresponding predicted upper bound on PCR in

the ideal case is from 94.67% to 98.80%. The pre-

dicted PCR (87%) is lower than the upper bound

because the feature extraction procedure intro-

duces several additional uncertainties such as

camera calibration error, silhouette segmentation
error, matching error, and body part occlusion.

Note that the use of binary silhouette to fit 3D

model suffers from ambiguity as a result of body

parts self-occlusion, and the use of least squares

makes it sensitive to noise in the silhouette. This

problem can be solved by considering the correla-

tion between adjacent frames.
6. Conclusions

In this paper, we proposed a Bayesian based

statistical analysis to evaluate the discriminating

power of extracted features. Through probabilistic

simulation, we not only obtain the probability of

correct recognition for our approach, but also
obtain the upper bound on the probability of cor-

rect recognition with regard to different human sil-

houette resolution in ideal cases. We obtain the
plots characterizing maximum number of people

in the database that can be recognized given the

allowable error rate. This will guide future re-

search for gait recognition in large databases.

The discrepancy between actual and predicted re-
sults will be reduced by developing better gait rec-

ognition algorithms.
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