EE260: Computational aspects of Integrative Biology

- 1) Prerequisite: Consent of instructor, background in imaging and machine learning
- 2) Instructor: Bahram Parvin
- 3) Time and Location: Friday, 12-3pm,
- 4) Units: 4
- 5) Description: The course introduces computational aspects of integrative biology for coupling high throughput experimental data. Instructor will provide a review of molecular and cell biology for Graduate students majoring in Electrical Engineering, Computer Science, or Bioengineering. The course will integrate advanced methods in biological image analysis with array-based data (such as gene expression and copy number data) for developing an improved synthesis of signaling networks.

6) Course outline:

- a. **Week 1**: review of cell and molecular biology for Engineers/Computer scientists and overview of the course projects
- b. **Week 2**: review of microscopy techniques, high content screening, and genomic technologies
- c. **Week 3**: Introduction to basic methods for analyzing microscopy and genomic data
- d. Week 4: Introduction to variational calculus and differential geometry
- e. Week 5: Variational approach image analysis (Part I)
- f. Week 6: Variational and graph cut methods for image analysis (Part II)
- g. Week 7: Voting methods for structural and functional analysis of images
- h. **Week 8**: Learning methods for phenotypic and genomic data: linear and non-linear methods (Part I)
- Week 9: Learning methods for phenotypic and genomic data: PCA, ICA, NMF and spectral methods (part II)
- j. Week 10: Reverse engineering of signaling networks
- k. Week 11: Project presentation
- 7) References: Instructor will provide papers and handouts. Other references are:
 - a. Andres Kriete (editted), "Systems Biology," Elsevier, 2005,
 - b. Bruce Alberts, et al, "Molecular Biology of the Cell," 4th edition, Garland Publitioning, Inc.
 - c. Neapolitan, R. "Learing Bayesian Networks", Prentice Hall Series, 2004
 - d. Weinberg, R., "The Biology of Cancer"
- 8) *Grading:* project presentation and final report
- 9) Quarter: Fall 2009