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The field of bioengineering has pioneered the application of new precision fabrication technologies to model the
different geometric, physical ormolecular components of tissuemicroenvironments on solid-state substrata. Tis-
sue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues
where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenviron-
ments have revealed a rich interplay between the genomeand extracellular effectors in determining cellular phe-
notypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision
bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have
many undefined components. Thus, introducing a computational module may serve to integrate these types of
platforms to create reasonable models of drug responses in human tissues. This review discusses how combina-
torialmicroenvironmentmicroarrays and other biomimeticmicroenvironments have revealed emergent proper-
ties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes
within those contexts, and the computational tools that can unify the microenvironment-imposed functional
phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of
these technologies will enable more accurate pre-clinical drug discovery.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The road to translating pre-clinical anti-cancer targets into clinically
successful drugs is strewn with billions of dollars worth of disappoint-
ments. A large number of compounds that cure diseases in rodent
model systems failed to provide meaningful clinical benefit in humans.
Although there is startling conservation between the expressed genome
of mice and men, significant differences arise at the level of physiology
and tissue architecture that can impact drug responses. Modern drug
discovery has moved towards the use of rationally designed molecules
that are screened in high-throughput systems for activity and against
off-target effects. In spite of these advances, ~85% of new cancer drugs
fail in phase 2 clinical trials because although they meet minimal safety
standards, they exhibit no efficacy [1]. Thus amajor challenge is to iden-
tify preclinical screening strategies using model systems that more
faithfully reflect the biologies of human tissues. This reviewwill discuss
how biomimetic microenvironments have revealed emergent proper-
ties of cells and cellular communities, the platforms that can measure
phenotypic changes within those microenvironments, and the compu-
tational tools that can unify the microenvironment-imposed functional
phenotypes comprising different constellations of proteins and genes.
Ultimately we propose that a merger of these technologies will enable
more accurate pre-clinical drug discovery.

Our understanding of the molecular basis of cancer has evolved re-
markably in the past two decades. Indeed, The Cancer Genome Atlas
program has identified a broad range of recurrent gene mutations and
structural rearrangements that putatively drive tumor genesis. Im-
proved medicinal and computational chemistry methods have generat-
ed unprecedented numbers of experimental therapeutic agents to
target pathways affected by recurrent genome modifications. In spite
of this progress, molecularly targeted therapies are yet to generate a du-
rable response in themetastatic setting, and cancer remains the leading
cause of death worldwide, accounting for an estimated 13% of deaths
[2]. The confounding reality for anti-cancer drug development is the
heterogeneity of tumors [3,4]. Far from a homogeneous expansion of
neoplastic cells, tumors are more appropriately viewed as abnormal
organs, comprisingmultiple cell types and dynamic extracellularmatrix
(ECM). Thiswayward “organ” interacts with the body via unique vascu-
lar systems and via an immune homeostasis that leads to evasion of
immune responses. The complexes of ECM, growth factors, cytokines,
inflammatory mediators, immune cells, oxygen tension, and tensile
forces that control malignant progression conspire to subvert cancer
drug effectiveness.

Understanding the interactions between cells and their natural
tissue microenvironment is of fundamental importance for tissue
engineering and regenerative medicine. The principles established in
this field are relevant for developing tissue model systems for drug
development and have revealed contextual drug responses [5–7]. The
microenvironment comprises chemical and physical signals that direct
cells to organize into functional multicellular architectures. The para-
digm of microenvironmental influence is the stem cell niche, a spatially
restricted locoregional tissue site that presents specific cell–cell and
cell–ECM interactions that control cell proliferation and differentiation.
Biofunctionalization of materials endeavors to mimic the nano- and
micro-scale interaction mechanisms characteristic of native biological
systems. These bioengineering-based approaches can also be applied
tomodel a disease. During the development of cancer, the natural tissue
architecture breaks down and the microenvironment is distorted.
We have proposed that immortal tumor cells respond inappropriately
to cues from the surrounding normal tissue, establishing a dynamic
interplay between the growing tumor and reciprocal microenviron-
mental signals that engender malignant characteristics via epigenetic
reprogramming [8]. The cellular plasticity facilitated by these gene ex-
pression changes, exemplified by the epithelial-to-mesenchymal transi-
tion (EMT), produces tumor cells with migratory and stem cell-like
characteristics (“cancer stem cells”). The unique repertoire of functions
gained by these tumor cells enables metastatic spread to distant ana-
tomical sites where new constellations of microenvironmental signals
are encountered. The ability of tumor cells to metastasize and survive
in foreign microenvironments is strongly correlated with resistance to
anti-cancer treatments, and therapeutic response failures are the lead-
ing cause of cancer patient deaths.

In vitro modeling of the diverse microenvironments encountered by
malignant cells is crucial to reveal contextual drug responsiveness. The
majority of pre-clinical investigations are performed in human cell
lines or rodent xenograft models that do not always accurately model
the human context. In a number of inbred mouse models of different
diseases, the gene expression patterns can differ strikingly from the
orthologous human disease [9,10]. Although inbreeding mouse strains
was meant to provide tractable genetic backgrounds for experimenta-
tion, a confounding side effect has been that each strain has unique
properties. Indeed tumor growth in both xenograft and mouse genetic
models of cancer can vary dramatically between strains [11,12]. One
solution for this has been to use outbred mouse cohorts, which are ge-
netically diverse andmay offer better mimicry of some human diseases
and aging at the population level [13].

Established human cell lines and primary cells propagated in 2D
culture are amenable to high-throughput experimentation; however,
they often lose the tissue-specific gene expression patterns and cell sur-
face proteins that are characteristic of the cells in their cognate tissues
[14–16]. A potential solution is to use higher-order multi-lineage
human cell systems, tomore accurately recapitulate the emergent prop-
erties of tissues and organs. Bioengineering technologies are now used
to fabricate components of tissue microenvironments on solid-state
substrata, while tissue engineering approaches are similarly applied to
assemble multicellular mimetic tissues where cells reside in a defined
spatial context. Importantly, the phenotype of cells in these fabricated
microenvironments revealed that the microenvironment can be domi-
nant over genotype [17–19]. Hence precisely defining the role of indi-
vidual and combinations of microenvironmental components is crucial
to allow reliable prediction of cellular responses to therapeutics.

1.1. The tumormicroenvironment is a potent determinant of drug responses

Themicroenvironment is defined as the sum total of cell–cell, –ECM,
and –soluble factor interactions surrounding each cell in a tissue. These
components exchange information with cells via a combination of
physical, chemical, and electrical signals, frequently activating or sup-
pressing the same pathways triggered by oncogenes [20–25]. Exposure
of a cell to a particular microenvironment elicits dramatic changes to
normal and malignant cell behaviors, such as stem cell-like activity
[26–28]. The influence of the microenvironment can be so profound
as to correct the otherwise malignant behavior of mutant cells within
an intact normal tissue structure [25]. Cytotoxic drugs are subject to
microenvironmental effects, usually through cell cycle modulation. For
instance, addition of therapeutic antibodies to VLA-4was shown to pre-
vent minimal residual disease following treatment of acute myeloid
leukemia (AML) with the nucleoside analog AraC; VLA-4 antibody
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prevented the tumor cells from binding fibronectin, which would pro-
duceAML cell quiescence and evasion of theDNA replication dependent
cytotoxic effect [29]. It has been known for 30 years that themicroenvi-
ronment can exert dominance over certain oncogenic mutations
[30,31]. Microenvironmental-induced phenotypic changes in tumors
such as EMT are associated with broad resistance to anti-cancer agents
[32]. The activities of the new generation of anti-cancer drugs devel-
oped to target specific oncogenic ‘drivers’ are affected by different
microenvironments. In a comprehensive study of prostate cancer cell
lines on 2-dimensional (D) tissue culture plastic or in 3-D Matrigel, it
was reported that PI3-kinase inhibitors were most effective in
preventing invasive cell growth in 3-D [33]. Culturing HER2/neu ampli-
fied breast cancer cell lines in 3-D versus 2-D revealed distinctive ther-
apeutic activities of the HER2-targeted agents Lapatinib, Trastuzumab,
and Pertuzumab [34]. β1 integrin-blocking antibodies could modulate
these contextual drug responses in 3-D cultures, implicating the role
of the ECM and demonstrating the opportunity for potential microenvi-
ronmental intervention as a therapeutic approach.

As the importance of microenvironment in therapeutic response
has become more widely accepted, the urgency to identify tractable
organotypic culture systems for studying human tissues in vitro has
manifested. Matrigel, HuBiogel, HuMatrix, and a number of other com-
mercially available laminin-rich ECMarewidely used to provide 3-D cell
growth environments, and these gels are used increasingly to study the
impact of drugs on cells grown in 3-D.Matrigel, which is harvested from
a rodent sarcoma cell line, is comprised of hundreds of proteins that can
vary significantly in the exact composition between production lots
[35]. In fact, laboratories that use these commercial gels in large quanti-
ty routinely screen multiple lots for their ability to reproduce data from
previous studies (M. Bissell personal communication). Recent adoptions
of 3D culture systems to high-throughput screening (HTS) systems are
an important advance and use of 3-D gels in HTS studies is now a less
daunting prospect [36]. However, placing human cells in an undefined
rodent sarcoma 3-D contextmay not mimic the intended in vivomicro-
environment, and variability in the molecular components may con-
found interpretations and reproducibility of the results.

1.2. Deconstructing cell–microenvironment interactions

Tissues are collections of cells and ECMorganized into unique spatial
configurations that collectively carry out a specialized function in the
body. Remarkably, tissues with an intact architecture can maintain
many basic functions in spite of the presence of gene mutations that
cause dysfunctions when introduced into cells on tissue culture plastic.
Why are tissues so robust? Seminal studies showing that wound-
healing microenvironments unleash malignant potential demonstrated
the principle that tissue architecture is a crucial component of cellular
function [21]. Organized asymmetry is therefore an important basic fea-
ture of tissues; there must be distinctive topologies on which receptors
assemble in order to correctly integrate the signaling patterns associat-
ed with tissue-specific functions. Tumor microenvironments should as
well possess combinatorial signaling asymmetries, though themicroen-
vironments may be less obviously organized. One hypothesis is that the
normal and tumor microenvironments integrate the signaling appara-
tuses differently, and thus therapeutic targets could be identified to se-
lectively harm the tumor cells, andmicroenvironment composition will
be a determinant of drug efficacy. Those potential differences in signal
integration can be revealed by technologies that recapitulate in vivo
microenvironments, using defined physical, geometric, and molecular
elements, and allowing one to assess the contribution of each property
to the emergent functional outcomes.

2. Combinatorial microenvironment microarrays

Cell-based functional screening of interactionswith combinatorialmi-
croenvironment microarrays (MEArrays) enables molecular dissection of
more complicated 3Dmicroenvironments (Fig. 1) [26–28,37]. These plat-
forms are amenable to high-throughput scale-upusing a number of imag-
ing modalities for quantification. Because the ECM, growth factors and
other microenvironmental components are adsorbed to a substrate
surface, the cells experience the microenvironments asymmetrically.
The challenges of these approaches are: access to purified extracellular
proteins, managing the combinatorial complexity to minimize cost and
maximize the combinatorial space that is evaluated, data visualization,
and statistical analysis to identify microenvironment components that
contribute a given outcome.

MEArrays have been used to profile cell–ECM adhesion biases [38],
to optimize growth of cultured cells [39], and to better understand the
interactions of human stem cells with putative niche proteins and
other tissue-specific proteins that were relevant to embryonic [26],
neural [28], mammary [27], and hepatic stem cells [37]. Taking a combi-
natorial approach, relative to a candidate-based approach, allows
screening combinations of multiple tissue-specific microenvironment
proteins to identify extracellular cues that are the basis for emergent
cell behavior. Functional roles for a number of molecules known to be
expressed in human mammary gland and brain, but hitherto had not
been ascribed respective roles formammary or neural stem andprogen-
itor cell regulation, were discovered using this type of approach.

2.1. Fabrication substrata

Combinations of ECM and other extracellular proteins are usually
printed on modified glass using standard quill-pin or piezoelectric
microarray printers, allowing functional screening on hundreds or
thousands of defined combinatorial microenvironments. Printing
substrata include aldehyde-, nitrocellulose-, polydimethylsiloxane
(PDMS) or polyacrylamide (PA)-coated glass slides and polystyrene
plates. Nickel-modified gold-coated glass can adsorb histidine-tagged
proteins. Aldehyde-derivatized glass facilitates covalent protein attach-
ment, but the covalent bondmaydestroy the activity of the printedmol-
ecules in some cases. PDMS is cost-effective, readily adsorbs proteins in
a nearly irreversible electrostatic interaction, and is capable of tuning
the elastic modulus to mimic that of tissues like cartilage, skin, and ten-
don (b1 MPa to 10 MPa) [40]. PA- coated slides are not as good at
adsorbing proteins, having weak electrostatic interactions, but proteins
seem to get stuck in the pores that are created, persist during washing
steps, and ultimately support cell attachment. PA gels can be tuned to
mimic the elastic modulus of soft tissues, e.g., brain, lung, and breast
(0.1 kPa to 100 kPa) [40]. MEArrays printed on PA gels are reported to
remain stably stored for up to threemonths [41]. It is possible that treat-
ment of PA gels with cross-linking reagents such as sulfo-SANPAH may
enhance protein stability. Nickel-modified gold-coated surfaces will
enable quantification of protein on the arrays by surface plasmon reso-
nance and have a high level of specificity to binding only his-taggedpro-
teins. Aldehyde-coated glass and PA-coated glass are hydrophilic and
most contact-printed features are thus circle-shaped, whereas features
printed on hydrophobic PDMS will be the exact shape of the pin-head
and can thereby take advantage of defined geometric shapes. Thus mo-
lecular composition, stiffness, and geometry are all potentially tunable
features in MEArray platforms.

2.2. Analysis and visualization

The combinatorial complexity of a MEArray experiment increases
rapidly when taking into account stiffness, geometry, and molecular
composition. The statistical analysis of MEArray experiments is a rate-
limiting step for this technology, and there have beenmultiple solutions
to this problem. Data are first normalized either to the ensemble aver-
age of the total signal from all array features or to the signal emanating
from cells on a control microenvironment that is known a priori to re-
producibly bias towards a given phenotype. Of the published reports,
each microenvironment is replicated from 4 to 12 times per array to



Fig. 1. Deconstructing complex microenvironments into tractable pieces using combinatorial microenvironment microarrays (MEArrays). (A) (i) A cartoon tissue microenvironment in
whichdifferent cell types interactwith eachother andwith ECMand soluble factors to generate a functional tissue. (ii) PurifiedECM, growth factors, and recombinant cell surface receptors
are mixed into combinations and printed on substrata that will support cell adhesion. (iii) Live cells are then added and cultured until an endpoint, (iv) when the relevant phenotypic
responses are measured. (B) A low resolution scan of a breast cancer cell line on a MEArray that was treated with an anti-cancer agent. Red fluorescence shows the staining of a receptor
tyrosine kinase, and green shows nuclei. Inset shows a higher magnification image in four cells on four distinct microenvironments (a, b, c, d). (Image credit: Dr. Tiina Jokela, LBNL.)
(C) Hypothetically, drug activities (e.g. IC50) (dashed lines) should be shifted in some combinatorial microenvironments.
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enable calculation of means and standard deviations; different modes of
visualization have been used that emphasize different aspects of the
data. Flaim et al. used a combination of pie charts, which showedmatrix
compositions, with bar graphs that represented a measured functional
response (Fig. 2A) [26]. Soen et al. measured GFAP and TUJ1 signals,
markers of neuronal differentiation, in every neuronal progenitor on a
given feature and visualized the data with X–Y intensity plots (Fig. 2B).
The authors assigned a response magnitude in progenitor cells upon ad-
hesion to a given microenvironment by normalizing to the response on
laminin only. They used hierarchical clustering and Pearson correlations
as the similarity metric to generate heat maps of the data and identify
trends in responses [28]. In Konagaya et al. a relatively small number of
growth factor combinations were tested to optimize neural progenitor
microenvironments, and they used hierarchical cluster analysis to reveal
three major clusters of microenvironment combinations that caused
growth, astrocyte or neurondifferentiation [39]. The combinatorial activ-
ity of microenvironment proteins was revealed using this cluster
method' in that EGF combined with either BDNF or IGF-1 grouped into
the astrocyte-inducing cluster, but EGF alone was in the growth cluster
and IGF-1 or BDNF alone was in the neuron-inducing cluster.

Brafman et al. utilized Z-score standardization to identifymicroenvi-
ronments that imposed phenotypes distinct from the global mean [41],
and they and others [26] employed factorial analyses to reveal complex
interactions between microenvironmental components. In LaBarge
et al. we primarily printed pair-wise combinations of microenviron-
mental components, which allowed for streamlined visualization,
using a standard heat-map in which each row represented a mammary
ECM and each column represented an ECM or a growth factor [27]. The
heat-map colors corresponded to the magnitude of log2 transformed
fluorescence intensities of two meaningful markers of mammary stem
cell differentiation (keratin 14 and keratin 8), and the height of the Z-
axis corresponded to the − log of the p-value (Fig. 2C). Dunnett's tests
were used to compare the means in each microenvironment to type 1
collagen-only controls, because when many conditions are compared
to one control condition the test has a narrow confidence interval and
fewer false positives than other T-tests. In order to distinguish between
cellular subsets that selectively adhered to a given environment from
microenvironment-imposed differentiation we compared arrays just
after all array features were saturated with cells on arrays after some
time had elapsed [42]. In all cases, it must be acknowledged that
microarray-based methods have inherent variability necessitating that
conclusions be validated with multiple orthogonal assays.

2.3. Managing combinatorial complexity

The potential complexity in a microenvironment microarray such
that combinations are not repeated can be determined by the equation
n! / (n− x)!(x!); where n is the number ofmicroenvironmental compo-
nents, and x is the number of components per microenvironment. The
number of permutations possible rises sharply in an array design that
incorporates three or more components per microenvironment.
Pairwise combinations are relatively straightforward for identifying
the components that drive the emergence of a particular functional phe-
notype, and factorial analysis might provide insight into the driving
components in more complex microenvironments. However, a hypo-
thetical MEArray design could take advantage of methods that more ef-
ficiently sample across combinatorial space to determine the different
combinations of microenvironmental proteins to be tested, but that do



Fig. 2. Three successful approaches in visualizing functional consequences of cellular interactions with combinatorial microenvironments in a highly parallel experimental environment.
(A) Mixed use of pie charts for detailing microenvironmental composition, together with bar graphs depicting functional responses (adapted from [26]). (B) Scatter plots showing single
cell functional responses on different ECM combinations (adapted from [28]). (C) Heat maps showing functional consequences of cells interacting with different pair-wise microenviron-
ments (composed of ECM 1–8 with a–p other), statistical significance is on the z-axis (adapted from [27]).
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not test every possible permutation. The TaguchiMethod, which is used
in engineering for process and manufacturing optimization [43], is an
example of orthogonal array optimization that could be employed in
the design of microenvironment arrays that have three ormore compo-
nents per microenvironment that differ in concentration. The goal is to
sample across the potential spectrum of microenvironments to identify
those which elicit the strongest desired functional outcome, then opti-
mize and validate based on those initial findings.

The utility of the MEArray approach for identifying drug targets or
determining how different microenvironments might impact drug ac-
tivity has not been explicitly demonstrated. However, using MEArrays
we discovered that the notch ligand Jagged1 was involved in maintain-
ing a stem cell-like phenotype in human mammary progenitors. As a
control, gamma secretase inhibitors were added to antagonize notch
signaling, and a number of microenvironments were revealed that
modulated the effects of the inhibitor with respect to mammary stem
cell fate decisions [27]. Those data demonstrated the principle that
drug–microenvironment interactions could be revealed using this type
of an array approach. MEArray-type approaches could be combined
with small interfering RNA (siRNA) technology to aid in target identifi-
cation or in determining the molecules that underlie a given functional
phenotype. “Cell spot microarrays” are essentially siRNA libraries
printed in type 1 collagen microenvironments that support cell adhe-
sion and reverse transfection of the siRNAs [44]. The content of the
microenvironments could be altered to explore the interactions
between given genes, microenvironments, and desirable functional
phenotypes.

There is tremendous potential for using these HTSmethods for iden-
tifying drug targets in context and for identifying the key properties of
tissues that will alter drug responses.

3. Highly parallel fabrication of microtissues with
reproducible architectures

Tissues in vivo have exquisite architectures, and most tissue culture
models are poor substitutes. Cell-basedmicrotissuemodels compensate
for gaps in knowledge that impact the completeness of MEArray de-
signs. Indeed, recent co-culture models that recapitulate vascularized
stromal microenvironments in 96-well plates demonstrated that
micron-scale changes in cellular neighborhoods were the difference be-
tween enabling and quenching metastatic behavior of breast cancer
cells [45]. Typical 3D cultures in which acini or other structures are
derived from a single cell provide some elements of tissue-like architec-
ture, but there is poor control over the cellular composition, structural
morphology, and cell positioning. To accurately mimic a tissue, control
of single cell positioning is required, because in locations such as stem
cell niches even a one-cell diameter change in position can have discern-
ible impact. Additionally, an optimal high-throughput experimental

image of Fig.�2
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environment would incorporate significant reproducibility of composi-
tion among tissues so that phenotypic outputs are comparable.

3.1. Self-organizing microtissues

In some cases, mixtures of cell types have the ability to organize into
higher-order structures based on differential cell–cell and cell–ECM
adhesion [46,47]. Experiments to understand self-organizing behavior
of cells are often performed in hanging droplets or upon agarose plates,
which are challenging imaging environments where there is poor
control of size or final morphology of the structures, and the microenvi-
ronments may be more representative of those experienced by pond
dwellers rather than human tissues. Using siliconwafers tomicropattern
arrays of cylindricalmicrowells in PDMS, itwas possible to control the ul-
timate geometry of self-organized bilayered structures generated from
differentiated lineages of human mammary epithelial cells (Fig. 3B)
[48]. Whereas this micropatterned approach was amenable to high-
throughput imaging and to quantifying changes in higher-order tissue
Fig. 3. Using microtissues to evaluate emergent properties of higher order tissue organization.
cross section of a normal humanmammary gland showsmany ductswith green keratin 19 expr
humanmammary epithelial cells possess the ability to self-organize in rudimentary structures,
cylinder (adapted from [48]). (C) Definedmicrotissues formed through a process of ssDNA-guid
be surrounded by about 6 red cells (adapted from [53]).
structure following exposure to different blocking antibodies and small
molecule inhibitors, it still lacked precision control at the single cell
length-scale.

3.2. Assembled microtissues

DNA-programmed assembly is a recently developed technology to
direct organization ofmulticellular “microtissues”with single cell resolu-
tion [49]. In this approach, the cohesive properties of cells are controlled
through modification of the cell surface with single-stranded DNA
(ssDNA) (Fig. 3C). There are multiple methods by which cell surfaces
have been modified with ssDNA. Cells can be fed azide-modified mono-
saccharides that get incorporated into cell surface glycans, after which
ssDNA is covalently attached to azides by Staudinger reactions or [1,3]-
dipolar cycloaddition [49,50]. N-Hydroxysuccinimide-modified ssDNA
can be reacted directly with free lysines [51], with lipid-ssDNA conju-
gates anchoring spontaneously in cell plasma membranes [52]. A num-
ber of cell types ranging from lymphocytes to epithelial cells were
Tissues have distinctive architecture, which we usually lose in tissue culture dishes. (A) A
essing luminal epithelial cells surrounded by red keratin 14myoepithelial cells. (B) Primary
with luminal cells surrounded bymyoepithelial cells, over timewith confined in a polymer
ed assembly. In this case cellular stoichiometrywas controlled so that one green cellwould

image of Fig.�3
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shown to stay viable through these labeling procedures. Specific multi-
cellular arrangements are achieved by mixing together cells coated
with complementary ssDNA, an approach has worked with up to three
different cell types. In the case of epithelial cell lines, after the initial
ssDNA-directed organization specified the initial location of every cell,
the ssDNA was removed through as-yet unknownmeans, and cadherin,
tight, and hemidesmosomal junctions formed [53]. Therefore, once spec-
ifying the microtissues' initial composition and architecture, the novel
group of cells will then dynamically maintain and change organization,
based upon the first principles of differential cell–cell and cell–ECM
interactions.

Using DNA-programmed assembly to generate tissue-level asymme-
try in RAS oncoprotein activity demonstrated that emergent properties
of tissues only arise in the presence of cell–cell variability [53]. It was
only when a single cell of the microtissue, composed of MCF10A,
expressed active RAS that they would exhibit extensive extrusion into
Matrigel. Thus crucial functional phenotypes may well be obscured in
uniform fields of cells cultured on tissue culture plastic. Bymicroprinting
the complementary ssDNA in regular arrays on microscope slides, this
method combined with quantitative imaging was used to show that
membrane dynamics in a non-adherent leukocyte cell line were altered
in the presence of different drugs [52]. DNA-programmed microtissues
and cell arrays present a new opportunity to precisely control cellular in-
terconnectivity to better understand the role of the cellular niche in drug
responses.

4. Measuring drug responses in heterogeneous cancer cell systems

Measuring the effect of a drug on tumor cells within a heteroge-
neous in vitro microenvironment generally entails high-resolution
measurement technologies that capture the complexity of the system.
Numerous aspects of cell physiology related to the desired phenotype
can be monitored, varying from inhibition of specific target protein ac-
tivity to induction of cell death. In all cases, the selected parameters of
interest must be quantifiable, to enable calculation of meaningful drug
IC50 values and to allow for higher-order computation. Early in vitro
cellular assays developed to screen for new anti-cancer agents mea-
sured tumor cell death in monoculture. This simple binary readout
could be monitored using a variety of biochemical or microscopy-
based techniques, and data analysis was straightforward. However,
due to the necessity to move beyond such simple “average cell” mea-
surements, multiparametric measurement of spatiotemporal events in
heterologous in vitro cell systems has gained favor, facilitated by a rap-
idly expanding spectrum of biological probes in concert with advances
in microscopy and spectrometry. These high-content imaging systems
(HCS) generate an unprecedented depth of information at the single
cell level, creating challenges for data handling and interpretation. For
example, simultaneous measurement of signal transduction events via
immunofluorescent detection of post-translational modifications of
proteins combinedwith time-dependentmorphological changes reflec-
tive of cellular function can be used to inform a compound'smechanism
of action [54]. Contemporary organotypic tumor culture systems com-
prising multiple cell types necessitate multiparametric measurement
to capture the complexity inherent in these systems.

4.1. High content screening in context

The mainstay technology for measuring drug phenotypes in com-
plex in vitro cell systems is fluorescence microscopy. Modern fluores-
cence microscope systems provide a high degree of flexibility and can
be readily integrated into high-throughput screening systems to pro-
vide single cell functional and morphometric information [36]. This
unique feature is particularly relevant when a contextual variance of
the phenotype is expected, for example, when only a subset of cells in
the system exhibits the phenotype, such as heterogeneous cell cultures
thatmodel ametastatic niche [45]. In a recent studywe used automated
live-cell imaging analysis of temporally regulated microenvironments,
to quantify the contextual activity of small compound inhibitors and
conduct structure–activity relationship analysis [6]. Numerous algo-
rithms have been developed that automatically quantify information
from microscopy images. Acquisition of quantitative information, such
as number, intensity, size, morphology, texture, and spatial distribution
of objects, is used for computational analysis of drug effects. Indeed,
IC50 values for specific small-molecule inhibitors from biochemical
assays correspond with IC50 values obtained using cell-based HCS
[55]. Computational approaches allow in-depth drug profiling by
multiparametric imaging, which can be used to derive mechanism-of-
action information [54].

3D cell culture systems comprising primary human cells have been
adapted for high-throughput imaging-based compound screening.
Common among these approaches is the detection of a fluorescent
marker that reports on a feature of cell physiology ranging from a spe-
cific signal transduction event to changes in cell morphology. Hence, a
prerequisite for using these screening systems is the availability of ap-
propriate fluorescence probes. A plethora of fluorescence-based probes
are available that facilitatemultiparametric measurement of spatiotem-
poral phenotypic changes (reviewed in [36]). Limitations to these fluo-
rescence microscopy-based systems are mainly related to the necessity
for an invasive staining step or expression of a fluorescent protein; var-
iable fluorophore photostability and phototoxicity; and signal detection
at deeper layers of 3D systems. These limitations are at least partially
addressed by high-speed multiphoton microscopy [56,57]. The use of
longer-wave excitation greatly reduces photobleaching and allows
imaging of live cells hundreds of microns deep within thick, strongly
scattering samples.

4.2. Label-free imaging modalities

Label-free noninvasive imaging techniques based on Raman spec-
trometry are particularly promising alternatives to measure biochemi-
cal changes in complex cellular systems. Raman spectroscopy spectra
span a broad spectrumof cellular biomolecules andmetabolites, provid-
ing a ‘biochemical fingerprint’ of the focal field at high spatial resolution.
Raman spectra are sensitive to small biochemical changes, and acquisi-
tion of high-resolution Raman spectra has been used to distinguish
between normal and transformed cells and measure cell cycle, cell
death, and cell differentiation using computational analysis algorithms
(reviewed in [58]). Comparison of confocal Raman spectroscopy with
immunofluorescence demonstrated the applicability for comprehensive
label-free, functional assessment of live cells [59]. Raman spectroscopy
was also used for in vitro monitoring of extracellular matrix (ECM)
formation in a 3D culture system [60]. An alternative to Raman is quan-
titative phase microscopy, which enables real time and label-free
quantification of mass transport in living cells, and assessment of 3-D
viscoelastic properties of living cells [61,62]. Moreover, this technique
can be combined with fluorescence to maximize information yield. Col-
lectively these advances exemplify the possibility to adopt Raman spec-
trometry approaches to assess contextual drug responses in mimetic
microenvironments.

5. Recapitulating tissue in silico from functional responses in
combinatorial microenvironments

Multiparametric analysis of combinatorial in vitro microenviron-
ments generates large amounts of functional data that must be coupled
to specific cell types, microenvironments, and drug responses. There are
huge repositories of gene expression data from the cell lines that are
commonly used for drug discovery, and those base-line gene expression
patterns should serve as a guide to predict how a cell might respond to a
given microenvironment. As a result, there are a significant number of
new computational opportunities to derive in silico models. Beyond
classical bi-clustering strategies that group microenvironmental



130 M.A. LaBarge et al. / Advanced Drug Delivery Reviews 69–70 (2014) 123–131
conditions with the phenotypic responses to infer dependencies, new
approaches can be explored for developing improved predictivemodels
through inclusion of (i) advanced regression models, (ii) detailed cellu-
lar profiling, and (iii) chemoinformatics analysis. These predictive
models can be represented as high-dimensional input/output functions
with low sample size' requiring careful experimental design that incor-
porates sufficient genetic diversity for constructing stable computation-
al models.

5.1. Linking genotype with microenvironment-imposed responses to drugs

Although various clustering methods can be used to partition cellu-
lar responses into categories, it is also feasible to design experiments
that elucidate or hypothesize common regulatory mechanisms. Cellular
responses are a function of the microenvironment, cell phenotype and
genotype, and therapeutic targets. Thus, one could hypothesize a
common mechanism-of-action for different drugs that elicit similar re-
sponses under identical microenvironmental conditions. The availabili-
ty of transcriptome data allows the construction of elaborate correlative
matrices. As an example of how this might be achieved, let tran-
scriptome data be represented as X0 ∈ RC ∗ N, where C is the number
of cells, and N is the size of the transcriptome. In particular, the number
of cells, C, is selected for their genetic diversity for improved robustness
in constructing stable computational predictors. Let D be the number of
therapeutic targets, andM be the readout of phenotypic responses. As a
result, the problem can be reduced to estimating a regression matrix Td
of size N-by-D-by-M, representing the cellular processes affected by a
drug treatment. Here, the regression matrix Td can be decomposed
into two matrices of TPd, where T is a shared subspace (e.g., a lower
dimensional space computed through linear operations) andPd is deter-
mined by specific drugs. This is known as multitask regression, and it
can be regularized further for improved stability, by forcing T to be
sparse (e.g., most elements of T are zero) [63]. The net result is a subset
of genes hypothesizing a common mechanism-of-action. Many varia-
tions of the same framework can be envisioned by directly encoding
microenvironmental characteristics into the regression matrix.

5.2. Quantifying morphology as a microenvironmental response metric

Cell morphology can be an informative feature in the context of
engineered matrices and cell–cell contact [64]. Multiparametric cellular
profiling provides a representation of spatial organization and cellular
response heterogeneity from single cell information [65,66]. Response
features may include morphometric indices such as cell shape, cell vol-
ume, patterns of chromatin organization, and membrane integrity. This
cellular profile can be correlatedwith spatial organization in the context
of each microenvironment. Computed indices are then compared be-
tween different microenvironments to identify subtypes. Alternatively
one can incorporate cellular profile features in the regression matrix
for inferring a regulatory network. In each case, the approach can facil-
itate a unique class of either knowledge organization (e.g., an atlas) or
hypothesis generation, at a scale that can be easily disseminated for
other investigators.

5.3. Predictive models built on chemoinformatic networks

Chemoinformatics analysis can facilitate the building of predictive
models by linking structures to responses. Typically, this is performed
by utilizing the Simplified Molecular-Input Line-Entry System (SMILES)
code to generate physiochemical properties and/or structural dissimilar-
ities between pairwise molecular graphs of therapeutic targets [67].
Measures for structural dissimilarities can range from simple distances
that measure differences between two-dimensional graph structures,
corresponding to therapeutic targets, to more elaborate distances that
measure differences in three-dimensional graphs. A number of tech-
niques have been proposed formeasuring structural and physiochemical
distances [68,69] and some are supported by commercial software such
as JChem. However, none of these techniques has yet been applied with
the aim of constructing predictive models of microenvironmental drug
responses.

6. Conclusions

The integration of new bioengineering approaches with technolo-
gies formultiparametric measurement cellular phenotypes tomodel di-
verse microenvironments is emerging as a powerful approach to reveal
contextual drug responsiveness. Improved 3D cell models that derived
from multiple cell types with precise spatial definition and combinato-
rial MEArrays comprising hundreds of ECM components are serving to
define specific microenvironmental features that determine drug ef-
fects. Successful application of bioengineering and cell biology princi-
ples has streamlined the processes necessary for MEArray fabrication.
Currently the major crux of this technology is inadequate methods of
analysis. The ultimate aim is to compare responses in the same cell
types across numerous defined microenvironmental conditions, which
differ iteratively by one component, in order to develop a complete pic-
ture of howmolecularmicroenvironment components and the physical
properties of elasticity and shape work together to elicit specific func-
tional phenotypes. However there remains a significant gap between
combinatorial array approaches and a comprehensive recapitulation of
a tissue microenvironment. Designer microtissues can help fill that
gap because the cellular neighborhood can be precisely controlledwith-
out having absolute knowledge of all the microenvironmental compo-
nents. Both self-organizing and DNA-directed assembly models offer
means of fabricating multi-cell type tissue constructs, which can theo-
retically be constructed to look as we see them in tissue sections with-
out having complete knowledge of the developmental process. These
contextual drug development environments will require improvement
and adaptation of HCS technologies in order to take full advantage of
the emergent properties of cells in tissue contexts. Finally, new compu-
tational approaches that build a modular framework for complex
queries of genomic data, cellular profiling, and chemical structures
will allow exploration of the relative contributions of genomes and mi-
croenvironments in drug responses and other emergent phenotypes of
high order tissue-level organization.
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