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ABSTRACT

subject to technical (e.qg., fixation, staining) and biotagi(e.g., cell
type, cell state) variations. The main technical barrigthit color

The Cancer Genome Atlas (TCGA) provides a rich reF’()Sitorycomposition, in the RGB space, is not consistent acrossetissc-

of whole mount tumor sections that are collected from déffer
laboratories. However, there are a significant amount dfrtieal
and biological variations that impede analysis. We haveldped
a novel approach for nuclear segmentation in histologyiaest
which addresses the problem of technical and biologicaatians
by incorporating information from manually annotated refee
patches with the local color space of the original image. sBub
quently, the problem is formulated within a multi-referergraph
cut with geodesic constraints. This approach has beenataticon
manually curated samples and then applied to a dataset afiddie
mount tissue sections, originating from different laboris, which
are typically 40k-by-40k pixels or larger. Segmentatiosutts,
through a zoomable interface, and extracted morphomedtir are
available at: http://tcga.Ibl.gov.

tions.

It became clear that a hand segmented dictionary will beetted
not only for validation, but also for constructing a modedtticap-
tures wide variations in the nuclear staining, both withid across
tissue sections. Accordingly, our approach integrateslland
global image statistics to construct a representation &ch eixel
based on the Gaussian Mixture Model (GMM). This represantat
is then regularized with the spatial smoothness constthiough
the graph cut framework. The net result is a binarized imagéobs
(a single nucleus or a clump of nuclei), which are eitherdagkd or
partitioned further through geometric reasoning.

Organization of the rest of this paper is as follows: Secfion
reviews previous research; Section 3 describes the defailsr ap-
proach; Section 4 provides experimental and validationltgsand

Index Terms— Nuclear segmentation, Nuclear/Background Section 5 concludes the paper.

classification, H&E tissue section
1. INTRODUCTION

Tissue histology provides a detailed insight into cellutaarphol-

ogy, organization, and tumor heterogeneity. In tumor sesii it

can be used to identify mitotic cells, cellular aneuploidpd au-
toimmune responses. More importantly, if tissue morphplagd

architecture can be quantified on a very large dataset, litpaile

the way for constructing databases that are prognostisaime way
that genome-wide array technologies have identified mtdesub-

types and predictive markers. Genome-wide molecular cteniaa-

tion (e.g., transcriptome analysis) has the advantageantiatdized
tools for data analysis and pathway enrichment, which cablen
hypothesis generation in the underlying mechanism. Howydle

protocol (i) provides an average measurement of the tismpsy

(ii) can be expensive, (iii) can hide occurrences of raren&s/eand
(iv) lacks the clarity for translating molecular signatuméo a phe-
notypic signature. On the other hand, phenotypic signatuterived
from tissue histology, are hard to compute due to biologicaltech-
nical variations, but they offer insights into tissue corsition and

heterogeneity (e.g., mixed populations) and rare events.

In order to have a robust system for characterizing tissae se

tions, it needs to be able to process samples from multipleréa
tories. The Cancer Genome Atlas (TCGA) offers such a catiect
where scanned samples originate from different laboregand are

2. REVIEW OF PREVIOUS WORK

The main issues that hinder correct nuclear segmentateteah-
nical (e.g., sample preparation) and biological heteredgr(e.g.,
cell type). Present techniques have focused on adaptiesttbiding
followed by morphological operators [1], fuzzy clusterii2j, level
set method using gradient information [3], graph cut metbouh-
bined with seeds detection[4], color separation followgdjtimum
thresholding and learning [5], hybrid color and texturelgsia that
are followed by learning and unsupervised clustering [id &lso a
common practice that through color decomposition, nuadlegions

can be segmented using the same techniques that have betn dev

oped for fluorescence microscopy. However, none of theskhodst
can effectively address analytical requirements of theotucharac-
terization. Thresholding and clustering assume constananeatin
content for the nuclei in the image. In practice, there is dewiari-
ation in chromatin content. In addition, there is the issité wer-
lapping and clumping of the nuclei, and sometimes, due ttishae
thickness, they cannot be segmented.
One of the main limitations of the above techniques is they th

are often applied to a small dataset that originated fromgleiab-
oratory. Therefore, some of the inherent variabilitiesramngimized.

3. APPROACH

Our approach consists of two components: classificatiowdmt

This work was supported by NIH grant RO1 CA140663 (bp) and U24nuclei/background, and nuclear blob partition, as showfigare 1.

CA1437991 (ps) carried out at Lawrence Berkeley Nationdddratory un-
der Contract No. DE-AC02-05CH11231.

For classification, we leverage both global and local imagéss
tics, in which global image statistics, in both RGB space bo&



response space, are extracted from manually selected anthted
reference patches, and local image statistics are estadlisased
on foreground and background seeds within a local neigldmath

of the image to be segmented. The information above is then co
densed and expressed in terms of Gaussian Mixture Modeldndgfla

constructed the model, graphcut framework [7] is utilizedlassify
nuclear and background content. Finally, delineated béwbssub-
jected to convexity constraints for partitioning clumpsnotlei [8].
In the rest of this section, we will discuss the details of work.
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Fig. 1. Steps in Nuclear Segmentation.

3.1. Color transformation: RGB to Blue Ratio

In order to reduce complexities for integrating LoG resgsnghe
RGB space is transformed to accentuate the nuclear dyee\&énit
eral techniques for color decomposition have been propdse®],
they are either time-consuming or do not yield favorableonte as
a result of wide technical variations. Our insight led tofibléiowing
transformation from RGB space into the blue ratio spacedormut-
ing the LoG responsesBR = lf%*fc 1+sz%+c, whereB, R
andG are the blue, red and green intensities, respectively.r&igu
demonstrates the immunity of blue ratio to biological arzhtécal
variation, compared with the method in [9].

In this transformed space, the peak of the intensity disticin
always corresponds to the frequency of occurrence of baakgr
pixels. Therefore, some of false negative or positive Lospomses
can be corrected by a simple comparison to the peak of thesitye
distribution.

3.2. Graph Cut Model

Within the graph cut formulation, an image is representea gsph
G = (V, E), whereV is the set of all nodes, anfl is the set of all
arcs connecting adjacent nodes. Nodes and edges corrasguirel
els (P) and their adjacency relationship, respectively. Addiily,

there are special nodes that are known as terminals, whick-co

spond to the set of labels that can be assigned to pixels.eloabe
of a graph with two terminals, terminals are referred to asstburce

(b)

Fig. 2. (a) Originalimages; (b) Blue ratio images; (c) Decomposit
by [9].

minimizing the energy:

E = Z (ng(xp) + ’yElf(a?p)) +0 Z Esmoothness(Tp, Tq)
pEV (p,9)EE
)

whereE ¢ is the global data fithess term encoding the fitness cost
for assigninge,, to p; Eiy is the local data fitness term encoding the
fitness cost for assigning, t0 p; Esmoothness(Zp, Zq) iS the prior
energy, denoting the cost when the labels of adjacent npaeg]q,
arex, andz,, respectively3 is the weight forE s oot hness; 7 is the
weight for E; ;. Construction of each of these terms are described as
follows:

3.2.1. Global fitness term

The global fitness is established based on manually andatetier-
ence images. Let’s assuméreference imagesk;,: € {1,...N},
and for each reference image, Gaussian Mixture Models aé us
to represent nuclear and background regions in HthB space
and Laplacian of GaussianL¢G) response space, respectively:
GMMpryereis GM M qcrgrounas iNWhichk € {1,..2N}.

An input test imagd is first normalized [11] with respect to ev-
ery reference imageR;, represented ad’I;. SubsequentlyLoG
responses ofVI; are collected to constru@N features per pix-
els, where the firsiV features are from the normalized color space,
and the lastV features areLoG response on the normalized im-
age. Let (i) f*(p) be k" feature of nodep; (ii) « be the weight
of LoG response; (iijp” be the probability function of* of re-
gioni with i = 0 : background;i = 1 : nuclei; (iv) p¥(p) =

GMMF . . . .
Z;:TME}(M and (v)\* be the weight forR;: Ay, = hist(Ry,) -

hist(N1Iy)/(||hist(Rg)||||hist(N1Iy)||). Wherehist(-) is the his-
togram function,Ry, is thek*" reference imagey I}, is the normal-
ized input Imagéel with respect taR,,. Then the global fitness term
is defined as,

N
Egp(zp=1) = —Y_ Xlog(pi(f*(p))) )
k=1

2N
—a- Y A Niog(p(£5 ()

k=N+1

(S) and the sink (T). The labeling problem is to assign a uailad  \yhere the first and second terms integrate normalized oettufes
bel 2, for each node € V, and the image cutout is performed by and LoG responses, respectively.
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negative (e.g., foreground or part of foreground) in thegfarmed
blue ratio image. The threshold is set at the minimum intgnisi
the blue ratio image, which has the most negative LoG regpons

3.2.2. Local Fitness Term

While global fitness term utilizes both color addG information
in the normalized color space, it does not utilize inforroatin the
original color space of the input image. As a result, localatéon
may be lost, i.e., nuclei having a wide range of chromatineatn
The local data fitness is computed as follows: Fig. 5. An example of reference images with manual annotation
I) Seeds detection: This step aims to collect local nuceilground overlaid as green contours.
seeds. It incorporates local and global image statisticsrfproved
seed detection. A typical end result is shown in Figure 3{@&)e
protocol consists of two steps: where, e, is the k' vector in the neighborhood systerdi,is the
1. Detect Seeds: Apply theoG filter(with scales) on blue ra-  cell-size of the grid Ay, is the angular difference between thig
tio image, detect peaks, and construct a distribution o blu and(k + 1)*" edge linesAdr = ¢ri+1 — dr, andD(p) is a metric
ratio intensity at the peaks corresponding to the negatide a continuously varying over poingsin a 2D Riemannian space, which
positive LoG responses. A small subset of seeds can be miés defined as:
labeled, where some can be corrected in the following steps. T
D(p) = g(IVI]) -1+ (1 —g(IVI]))-u-u (5)

2. Refine seeds: Filtering of seeds (e.g., peaks of the LoG

response) are constrained by three criteria: (i) the LoG réwhereu = Z4; is a unit vector in the direction of image gradient at
sponses must be above a minimum conservative threshold for : I , 22

removing strictly noisy artifacts; (ii) the intensity assated POt I is the identity matrix, ang(z) = exp(—355>)

with the peak of the negative LoG responses (e.g., foregroun

peaks) must concur with the background threshold that is eg- Edge | Weight | For |
tablished in Section 3.1; and (jii) within a small neighbood p—S | Eg(zp=1)+ Eip(zp=1) peP

of w x w, the negative LoG response with the minimum blue[™ , =T E,i(xp = 0) + Eif(zp = 0) pEP

ratio, is set as a threshold for background peaks, as shown |n {p. ¢} €N,

Figure 3(b). we(p, q) wi(p) b5y € {Pk, T + dr}

I1) Local Nuclei/Background color modeling: For each pixel
a local neighborhood is represented by two Gaussian Mixlod- ) ) .
els in the original color space. The GMM model is computednfro Table 1. Edge weights for the graph construction, whevés the
the LoG seeds that are detected in a local neighborhooddyoun ~ Neighborhood system.

The local fitness term is defined as:

Eif(xp = i) = —log(pi(f(p))) @) 4. EXPERIMENTAL RESULTS AND DISCUSSION

where f(p) refers toRGB feature of node in the original color

. o . - In order to capture the technical variation, we manuallesteld and
space, ang; is the probability function off of region: (here,: = P 4

annotated 20 GBM samples(20X), as reference images fromATCG

0 : back di=1": lei do. _ GMM,; (p) . R .

s background; i = 1 : nuclei), andp;(p) = ST, GMM,;(p) repository. Each sample is a 1k-by-1k block, and an exanmple i
shown in Figure 5. For each input image(20X), to be segmented

3.2.3. Smoothness Term only top M = 10 reference images with highestwere used. The

number of components fa@x M M was fixed to be 20, and other pa-
rameter settings werex = 0.1, 3 = 10.0, v = 0.1, p = 10.0,
o = 4.0 andw = 100, in whicho was determined based on the pre-
ferred dimensions of malignant and normal nuclear size 4t a6d
all other parameters were selected to minimize the crosdatain
error. Two-fold validation was applied on the referencedges and
5% - lex|® - Ay - detD(p) @) comparisons of average classification performance andesggtion

2- (el - D(p) - ek)% performance were made between our current approach(MR@L) a

In order to utilize the gradient information of nuclear bdaries,
we adopt the setup from [12], in which the n-links are spealfic
designed to carry the geodesic information of the input indgken
a 2D image grid as an example, as shown in Figure 4, the n-tigk e
weight for k" family of edge line at nodp will be:

wi(p) =



Fig. 6. Row 1: Original images; Row 2: Classification results via
MRGC; Row 3: Nuclear partition results via geometric reasgn

| Approach | Precision| Recall |
MRGC 0.79 0.78
Previous ApproacH  0.78 0.65

Table 2. Comparison of average classification performance betweenl®]

MRGC, and previous approach [13].

our previous approach [13], as shown in Table 2 and TablesBee
tively. Having evaluated performance of the system, weiagmur
method to a large dataset containing 440 GBM tissue seatibith
are typically 40k-by-40k pixels or larger, and the resulerevused
for integrated analysis [14]. Figure 6 shows some snapsifdtse
classification and segmentation results; the completdtsefau all
the GBM tissue sections are available at: http://tcgad.

5. CONCLUSION AND FUTURE WORK

Table 3.
mance between MRGC,
which  precision

recal

| Approach

MRGC
Previous Approach

| Precision| Recall ]

0.75 0.85
0.63 0.75

Comparison of average segmentation perfor-

and previous approach [13], in

#correctly-segmented-nuclei and
#segmented-nuclei '

1= #correctly_segmented_-nuclei

T #manually-segmented-nuclei*
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