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Abstract

Temporal analysis of genome-wide data can provide insights into the underlying mechanism of the biological processes in
two ways. First, grouping the temporal data provides a richer, more robust representation of the underlying processes that
are co-regulated. The net result is a significant dimensional reduction of the genome-wide array data into a smaller set of
vocabularies for bioinformatics analysis. Second, the computed set of time-course vocabularies can be interrogated for a
potential causal network that can shed light on the underlying interactions. The method is coupled with an experiment for
investigating responses to high doses of ionizing radiation with and without a small priming dose. From a computational
perspective, inference of a causal network can rapidly become computationally intractable with the increasing number of
variables. Additionally, from a bioinformatics perspective, larger networks always hinder interpretation. Therefore, our
method focuses on inferring the simplest network that is computationally tractable and interpretable. The method first
reduces the number of temporal variables through consensus clustering to reveal a small set of temporal templates. It then
enforces simplicity in the network configuration through the sparsity constraint, which is further regularized by requiring
continuity between consecutive time points. We present intermediate results for each computational step, and apply our
method to a time-course transcriptome dataset for a cell line receiving a challenge dose of ionizing radiation with and
without a prior priming dose. Our analyses indicate that (i) the priming dose increases the diversity of the computed
templates (e.g., diversity of transcriptome signatures); thus, increasing the network complexity; (ii) as a result of the priming
dose, there are a number of unique templates with delayed and oscillatory profiles; and (iii) radiation-induced stress
responses are enriched through pathway and subnetwork studies.
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Introduction

Biological systems often operate as networks of interacting

components that are highly regulated [1]. These networks enable a

cell to integrate external stimuli and biochemical reactions that

can potentially lead to the activation of transcription factors (TFs).

In turn, these TFs recognize a specific regulatory region for

manipulating gene expressions. Characterization of network

biology has been further advanced through mathematical analysis

of genome-wide array data for hypothesis generation. In the

context of mathematical modeling, logical (e.g., Boolean [2],

stochastic [3,4], petri net [5]) and continuous (e.g., ordinary

differential equations [6], flux balance analysis [7]) techniques

have been proposed. Recent reviews of these techniques can be

found in [8,9]. Each of these techniques has its own pros and cons

with distinct application domains. In this paper, we introduce a

method to hypothesize a causal network that is derived from the

analysis of the time-varying genome-wide array data, where

causality is interpreted in a weak sense to show a potential

relationship between groups of transcripts at two consecutive time-

points. Given the complexities of a biological network and

inherently high dimensionality of an array-based data coupled

with a low sample size, we aim at deriving the simplest network for

hypothesizing causality. We suggest that causality can be inferred

through either perturbation studies or time-course data. The latter

has the potential to enrich the genome-wide array data by

grouping time-course profiles; thereby, leading to a lower

dimensional representation. Subsequently, such a low dimensional

representation can then be modeled as a layered signaling

network, where each output at a given time layer is expressed as

a function of inputs from a previous time point. The net result is a

causal network (e.g., a wiring diagram) that fits the time-varying

data according to a cost function. The concept of ‘‘simplicity’’ is

enforced by requiring that (i) not all input variables from a given

time point contribute to an output at the next time point, (ii) an

output is a linear combination of input variables, and (iii) there is a

notion of continuity in the signaling network. Collectively, these

constraints lead to a highly regularized sparse linear model. The

method is validated against different configurations of synthetic

data and then applied to an experimental dataset to examine the

effects of a higher dose of ionizing radiation with and without a

priming low dose of radiation, which is known as an adaptive

response. The proposed computational protocol is applied to a

unique experiment in radiation biology, where a cell line has been

treated in one of two different ways: (a) with a challenge dose of

200 cGy or (b) with a priming dose of 10 cGy followed by the
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challenge dose of 200 cGy. The latter is referred to as an

‘‘adaptive response’’ [10–12], since adaptation is attributed to

reduced damages as a result of adding the priming dose.

Consequently, it is our goal to characterize and differentiate

induced perturbations in terms of the (a) shape and number of

computed templates, (b) architecture of the wiring diagrams, and

(c) biological interpretation through enrichment analysis.

Results

We provide an analysis of clustered temporal profiles, followed

by an interpretation of the causal networks.

Analysis of temporal profiles
The initial sets of gene expression data for the treatment groups

with and without the priming dose are reduced to 682 and 527

genes, respectively, in accordance with the policy outlined in the

Method section. These genes have highly variable expression

values across different time points. Consensus clustering of filtered

transcript data indicates there are 8 clusters that correspond to

samples receiving the priming dose (e.g., adaptive response) versus

the 5 clusters that do not receive the priming dose (e.g., challenge),

as shown in Figures 1A and 1B. Each cluster from each of the

treatment groups corresponds to a unique temporal profile as

shown in Figures 2C and 2D. The details for selecting the number

of clusters are summarized in Figures S1, S2, S3, S4, and Text S1.

We label each template, in its own cluster, as Ti
adaptive and

Ti
challenge, where i represents the template number (e.g., 1–8 for

those with the priming dose), adaptive represents those samples

receiving the priming dose prior to the challenge dose, and challenge

representing those that only receive the challenge dose.

A comparison of Figures 1C and 1D indicate both similarities

and dissimilarities in the radiation response with and without the

priming dose. These differences can then be used to probe for

bioinformatics analysis. We used Pathway Studio to analyze the

computed clusters through pathway and subnetwork enrichment

analysis for identical and differential responses with the results

shown in Tables 1 and 2.

Similar profiles such as: (i) T7
adaptive and T2

challenge appear to have

a down-regulated profile from 1 to 8 hours. Here, the pathway

and subnetwork enrichment analysis reveals a significant amount

of overlap through the cell cycle regulation and inflammatory

responses. (ii) T8
adaptive and T1

challenge are initially flat and then

down-regulated with similar pathway (e.g., cell cycle and

Hedgehog) and subnetwork (e.g., E2F, RB1, TP53, PDGF)

enrichment analyses. The role of E2F and RB1 in regulating cell

cycle, cell fate, DNA damage repair and apoptosis has been well

established [13,14]. It has also been shown that the cellular

response to DNA damage utilizes the RB/E2F cell cycle pathway

[15]. Their time profiles are shown in Figure 2, where RB1 is

significantly down-regulated in samples receiving the priming

dose. The E2F family shows similar profile for its transcripts; a

representative, E2F8, is also shown here. (iii) Conversely, T1
adaptive

and T5
challenge share the same temporal signature, but in the

opposite direction of the templates in (ii). Specifically, they are

initially flat, but then upregulated. These templates share a

significant amount of overlap in terms of pathway (e.g., apoptosis)

and subnetwork (e.g., TP53, SP1, IL1B, and EGFR) enrichment

analyses. (iv) Although T4
adaptive and T3

challenge also has similar

temporal profiles, the ensemble of genes representing T3
challenge are

poorly enriched, which is largely due to the lack of related

annotation data. On the other hand, T4
adaptive is highly enriched for

FOXO3A and NF-kB. (v) Lastly, T2
adaptive and T4

challenge are initially

upregulated and then plateau after the 2 hour time point with the

enrichment of CD43 (for regulating immune function) and TP53

pathways in adaptive and challenged response treatment groups,

respectively. These analyses suggest that every template in the

challenge group has a profile similar to those in the treatment

group with the priming dose, and in one case, pathway enrichment

has been limited only to the immune function activation.

Dissimilar profiles are T5
adaptive and T6

adaptive (upregulated and

downregulated, respectively, at the 4 hour time point) as well as

the oscillatory profile of T3
adaptive. The first two templates indicate a

delayed response as a result of the priming dose, and enrichment

analysis indicates a number of components that overlap with the

existing templates. In T5
adaptive and T6

adaptive, STAT signaling is an

enriched dominant pathway that integrates cellular stresses such as

ultraviolet radiation, inflammation, and infection [16], as reflected

in the subnetwork enrichment analysis and reported earlier as a

result of low dose radiation on inbred strains of mice [17]. Further

examination indicates that T6
adaptive shares some of the components

of T1
challenge, but with a delayed response, as shown in the

supplementary section. These shared transcripts, for example,

HIST1H4B, are nuclear-bound and are involved in chromatin

remodeling. However, the subnetwork enrichment analysis of the

oscillatory profile of T3
adaptive indicates enrichment of NF-kB,

TP53, and TGFB1, shown in Figure 3. Figure 4 shows the

temporal profiles for a subset of transcripts presented in Figure 3,

which are also known to be sensitive to ionizing radiation.

Although the oscillatory signature is more dominant in the

adaptive response where it forms a distinct cluster (e.g., template),

some of the transcripts in the challenge groups also show similar

profiles. Finally, TGFB1 has been identified as a common

regulator of radiation response in Figure 4, though its transcrip-

tome profile is not significantly altered as a result of ionizing

radiation.

Analysis of causal network
Causal networks, shown in Figures 5 and 6, indicate interactions

between computed temporal profiles. These networks are

constrained to infer the simplest wiring diagram, in terms of

directed graphs, for interpretation. The wiring diagram provides

the means for interpretation of each computed template and its

role in the dynamical system. Below, we analyze both the initial

and final active templates.

The initial active templates are T1
adaptive, T2

adaptive, T3
adaptive,

T7
adaptive, T2

challenge and T4
challenge, and bioinformatic analyses

suggest that the network is enriched by cell cycle, inflammatory,

and apoptosis regulation processes. Although for the treatment

group receiving the priming dose, enrichment is highly biased with

inflammatory and immune responses. It is also clear that the

oscillatory template T3
adaptive and delayed activation T6

adaptive play a

role in the adaptive response (e.g., the treatment group receiving

the priming dose) at an intermediate stage. Had there been no

connections, then these templates would have been non-essential.

The final active templates (e.g., the interval between 4–8 hour

time point) are largely enriched by the identical temporal

signatures in T1
adaptive, T4

adaptive, T6
adaptive, and T3

challenge. While

FOXO3A and NFkB pathways are highly enriched through

multiple receptors with the group receiving the priming dose,

enrichment in the challenge group is limited to EGR1. Enrich-

ment of FOXO3A is potentially due to PDPK1, which is

differentially expressed between the two treatment groups, as

shown in the top row of Figure 7. However, there is no

Causal Network from Time-Varying Transcriptome
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Figure 1. Analysis of temporal profile. Consensus clustering indicates A) 8 clusters for transcript data with the priming dose and B) 5 clusters in
the control group. Each cluster, in A) and B), corresponds to a unique temporal profile as shown in C) and D), respectively.
doi:10.1371/journal.pone.0042306.g001
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differentially expressed signal in FOXO3A transcription factor

even though EGR1 and FOXO3A are shown to be associated

with the exposure to the ionizing radiation [18,19]. EGR1

functions as a hub for many signaling cascades that is essential

for growth and proliferation [20], and is down-regulated as a result

of ionizing radiation in both groups. Within the FOXO group,

FOXO4 has a slight upregulation in both treatment groups.

FOXO transcription factors are highly conserved genetic path-

ways, at the intersection of aging and cancer, that are phosphor-

ylated in response to insulin and growth factors [21]. Upregulation

of FOXO can cause apoptosis through an independent p53

pathway [19], whereas loss of Forkhead FOXO transcription

factors in a cancer cell may decrease cell cycle arrest or apoptosis

as a result of DNA damage or genomic instability [22,23].

Enrichment of NFkB is potentially through the TNF family. More

specifically, TNFRSF10B is an activator of NFkB while

TNFRSF11B is an inhibitor of NFkB. Their profiles are shown

again in Figure 7 (lower row).

Discussion

From the perspective of a strict gene expression, the fold

changes are generally low and appear to be stochastic as a result of

ionizing radiation. This observation is consistent with previous

literature [24,25]. Nevertheless, the temporal patterns from the

gene expression provide more candidates and are more informa-

tive than a single time point observation, i.e., any transcript with a

small value, at a given time point, can be eliminated using

standard filtering techniques. The richness of the temporal gene

expressions is crucial in grouping and hypothesizing causal

relationships from high dimensional transcriptome data. Typically,

inference of the causal relationships can be ambiguous; there is

significant literature in support of it [26] and against it [27], but

most researchers agree that through carefully designed experi-

mental data, ambiguities in the inference of causation can be

reduced or eliminated. Such an experimental design may include a

specific set of perturbations (e.g., siRNA) that may also include the

time-course data. The time-course enables identification of a set of

similar profiles that will (i) reduce complexities in the causal

network, (ii) provide pseudo replicates for sampling and cross

validation, and (iii) constrain the network structure (and the

solution) by enforcing temporal continuity. In short, the proposed

computational protocol enables interpretation of a complex

dataset at multiple steps. However, the main theme is inference

of the simplest network that is computationally tractable, and at

the same time, interpretable. The method is initiated by

identifying temporally co-regulated transcripts into a distinct set

of templates or groups. This step not only reduces the

dimensionality of the data, but also reduces the number of

variables that need to be estimated for building the causal network,

i.e., transition matrices. The network construction assumes a

model for which every node, at a given time point, is a sparse

linear combination of nodes in the previous time point. The

concept of sparseness also enforces the notion of network

simplicity. Finally, the solution is regularized by eliciting continuity

of the transition matrices between consecutive time points. It

should be noted the method has been applied to transcriptome

data, but it is also extensible to other time-course data, i.e.,

identifying aberrant signal transduction pathways.

The method has been validated on synthetic data and then

applied to transcriptome data that has been collected from a cell

strain, which was exposed to 2 Gy ionizing radiation (e.g., the

challenge dose) with and without the priming dose of 10 cGy

applied 4 hours prior to the higher dose of radiation. Bioinfor-

matics analyses revealed that computed templates (e.g., clusters)

without the priming dose (e.g., in the challenge group) are a subset

of those that received the priming dose (e.g., the adaptive response

group). Furthermore, the adaptive response group included

templates with delayed activations and oscillatory behavior. It is

clear that the priming dose has induced a significant amount of

diversity in how the networks are modulated. In both treatment

groups, the initial active templates of the causal networks are

highly enriched by the down-regulation of the cell cycle

Figure 2. Transcriptome profile of E2F family and RB1 indicates
down-regulation for the treatment group with the priming
dose. RB1 remains unchanged in the absence of the priming dose.
Dash red-lines correspond to adaptive response.
doi:10.1371/journal.pone.0042306.g002

Table 1. Ariadne signaling pathway and subnetwork enrichment with priming dose with the default p-value of 0.05.

Templates with priming dose Signaling pathway enrichment Subnetwork enrichment

T1 Apoptosis regulation, TNFR-.(AP1, NF-kB, CREB),
IL1R-.STAT3, FOXO3A with p-value,0.02

TP53, SP1, GF, TNF, IL1B, TGFB1, IFNG, Cytokines with
p-value,0.004

T2 TP53 signaling with p-value,0.008 TP53, TP73, STAT1, E2F1, interferon, ESR1, CREB1, NF-
kB, IFNG, SP1

T3 (TNFR,TLR3, CSF2R, DDR1)-.NF-kB, Mast cell
activation, DDIT3, HSF1, AP-1 with p-value,0.03

NF-kB, TGFB1, TNF

T4 (HGFR, PDGFR, VEGFR)-.FOX03A, multiple
receptors-.NF-kB signaling

Proteasome endopeptidase complex with p-
value,0.03

T5 STAT signaling POU2F1, CEBPA, RCA1

T6 Hedgehog, Cell cycle, Notch,STAT3, STAT, STAT1 NOG, PDGF, EDN1, IL1A

T7 Cell cycle regulation with p-value,0.0002 IGF1, VEGFA, Ras

T8 Cell Cycle regulation, hedgehog E2F, RB1, TP53, MYC, PDGF

doi:10.1371/journal.pone.0042306.t001
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machinery. However, in the case of the adaptive causal network,

the network is also modulated by the up-regulation of the

inflammatory processes. On the other hand, with the exception

of EGR-1, the network is poorly enriched at the late stages for the

treatment group that does not receive a priming dose. It has been

suggested that both EGR-1 and p53 are essential for mediating

radiation-induced apoptosis [28]. The effect of priming at a late

stage indicates a network modulation through pro-inflammatory

responses and proteasomes, which is also consistent with the

literature on low dose exposure [29,30].

Another way to examine experimental data is through

enrichment of cellular processes. Initially, both treatment groups

are enriched by DNA double strand repair, apoptosis, and cell

cycle processes. However, the group receiving the priming dose is

also enriched with single strand base excision and mismatch DNA

repair. Within the group receiving the priming dose, these

processes are modulated with a chromatin remodeling (e.g.,

T6
adaptive) at 8 hour time point. On the other hand, the group

receiving no priming dose appears to be poorly enriched in the

final stages. The bioinformatics analysis suggests that the priming

dose changes the network architecture by delaying the effects of

the chromatin remodeling.

Materials and Methods

Experimental design
The experiment is designed around the human diploid,

embryonic lung, fibroblast cell strain WI-38 (TP53 proficient)

[31,32], which is publicly available from the Coriell Institute.

These cells were grown as a monolayer (2D) under a physiolog-

ically relevant oxygen concentration (3%) with 10% CO2, instead

of at high oxygen levels (about 20%). Additionally, the cells were

asynchronously growing when exposed to 2 Gy (e.g., the challenge

dose) of ionizing radiation (160 kV X-rays), with or without a

priming dose of 10 cGy (e.g., the adaptive dose), 4 hours prior to

the challenge dose. Three biological replicates for each treatment

group (e.g., with and without the priming dose) were collected 1, 2,

4 and 8 hours after the challenge dose. The time-course was

selected on the basis of our prior research on early responses to

ionizing radiation [33,34]. Purified total cellular RNA was

extracted using an RNeasy Mini Kit (Qiagen) and quantified for

Affymetrix microarray analysis using the Human Gene 1.0 ST

Array. A robust multi-array analysis (RMA) was performed to the

normalize data collected from the different samples. Samples were

then examined for quality control using the NUSE protocol, which

Table 2. Pathway and subnetwork enrichment without the priming dose with the default p-value of 0.05.

Templates without the priming dose Signaling pathway enrichment Subnetwork enrichment

T1 Hedgehog, Cell cycle regulation E2F, TP53, RB1, MYC, SP1, PDGF

T2 Cell cycle, Notch-.(MEF, TCF3, NF-kB) Proteasome endopeptidase complex, TP53, cytolines,
NF-kB, IL1B, TGFB1, TNF with p-value,0.01

T3 none EGR1, GH1

T4 TNFR-.(AP1, TP53, NF-kB, CREB), CD43,
TNFRSF6-.(HSF1, FOXO3A, RB1, E2F)

TP53, AKT1, MAP, SP1, NF-kB, IFANG, TNF with p-
value,0.02

T5 Cell cycle regulation, Apoptosis TP53, SP1, IL1B, EGF, TNF

doi:10.1371/journal.pone.0042306.t002

Figure 3. Subnetwork enrichment analysis of template 3 with priming dose.
doi:10.1371/journal.pone.0042306.g003

Causal Network from Time-Varying Transcriptome
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Figure 4. Temporal profiles of endpoints in Figure 4 with a significant fold change. Dash red-lines correspond to adaptive response.
doi:10.1371/journal.pone.0042306.g004

Causal Network from Time-Varying Transcriptome
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is shown in Figure S5 and Text S2. The array data is publicly

available with accession number of GSE37688.

Computing temporal templates from gene expression
data

The first step of our protocol is to eliminate transcripts with little

variation, which are maximum folds of change less than 0.5. The

net result is a significant reduction in the number of candidate

transcripts, with those having similar temporal profiles being

grouped together. The basic assumption is that co-regulated

transcripts have a similar biological basis and is a step towards

significant dimensionality reduction through clustering and

categorization. Currently, there is an abundance of literature

available on the clustering of time-varying expression data that

includes predefined templates [35], autoregressive models [36],

curve-based clustering [37], and mixture models [38]. Nonethe-

less, this is not the main theme of our research. Our approach

relies on constructing template profiles through consensus

clustering [39], widely used for class discovery, and then

leveraging higher level enrichment analysis for evaluation.

Consensus uses a voting strategy on the resampled data, from

different runs, with a clustering algorithm (e.g., k-means), and

facilitates visualizing of computed clusters for quality control. In

our implementation, the clustering algorithm is based on k-means,

where the distance measured is one minus the sample correlation.

The clustering procedure is repeated for 1000 runs, and each run

is performed on the randomly sampled genes with a sampling rate

of 0.8. The optimal number of clusters is determined by examining

the clustering stability and similarity matrix.

Inference of causal networks
Suppose we have clustered genes into K groups, and each group

contains n
K

genes, i.e., GK ~ gK
1 , gK

2 ,:::, gK
nK

n o
. All the genes in

the same group are assumed to have similar temporal patterns,

which can be thought of as being denoted by a representative

pattern, vK [R1|T , where T is the number of time frames. By

concatenating the representative pattern for the K groups, we can

obtain a K-by-T data matrix

P~

v1

:::

vK

2
64

3
75: ð1Þ

Our objective is to analyze the temporal causal relationships

among the gene expression profiles for the K groups, i.e., whether

the expression level of group-i at time t will have an impact on the

expression level of group-j. More systematically, we use the

following matrix equation to encode the causal relationships,

P
tz1 ~ W

t
P

t : ð2Þ

Here, Pt [RK|1 denotes the t-th column of V, and W t [RK|K is

the time-varying coefficient matrix, where W t (i,j) depicts how the

expression level for group-j at time t affects the expression level of

group-i at time t+1. A positive W t (i,j)indicates a positive

correlation, and a negative one means a depression in the

expression level.

However, in practice, we are confronted with the big challenge

of processing limited data while estimating the large parameter

Figure 5. Causal networks for the 8 templates with priming dose in Figure 2C.
doi:10.1371/journal.pone.0042306.g005

Figure 6. Causal networks for the 5 templates without priming dose in Figure 2D.
doi:10.1371/journal.pone.0042306.g006

Causal Network from Time-Varying Transcriptome
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space of W t. Additionally, more complications are introduced as a

result of the time-varying nature of W twhich increases the number

of parameters by a factor of T. To alleviate the lack of samples in

the inference problem, we propose the following extensions:

(i) A temporal regression framework for the time course data.

Instead of using only one column in Equation (2), we will apply

a few columns together, corresponding to a small sliding window

(multiple adjacent time frames) in the forward direction:

½ftz1 Ptz1; ftz2 Ptz2; :::; ftz1zD Ptz1zD�~

W
t½ft Pt; ftz1 Ptz1; :::; ftzD PtzD�,

ð3Þ

Where ft ~e{ ((i{ t0 )=h)2 is a weighting function that assigns

smoothly decaying weight to the distance between t and the

current centering frame t
0
. We simplify the notation of the linear

equation group (3) by

P
(tz1)
D ~ W

t
P

(t)
D , ð4Þ

where P
(t)
D ~½ft Pt; ftz1 Ptz1; :::; ftzD PtzD�[RK|(Dz1) This is

illustrated in Figure 8, where we use a sliding window of D= 2.

As one can see, for current centering frame t0~1, the equality

P2 ~ W 1 P1 is assigned the largest weight, P3 ~ W 1 P2 has a

smaller weight, and P4 ~ W 1 P3 has a diminishing weight. This

means that when computing W 1, most of the emphasis should be

placed on the constraint closest to the current time frame, i.e., the

relationship between P1 and P2. By doing this, we equivalently

increase the number of samples used to compute each W t, while at

the same time assigning smaller weights to samples that are

temporally too far away from the current centering frame.

Mathematically, we use the regression framework for computing

the coefficient matrices,

min
XT{1

t~1
P

(tz1)
D { W

t
P

(t)
D

��� ���2

F
: ð5Þ

(ii) The coefficient matrices should vary smoothly with time.

Temporal coherence of W t is an important constraint that can

be utilized to enforce reliable estimations. We assume that the

mechanism for gene-gene interactions is unlikely to change

drastically over small time intervals. This is then translated into

a smoothness term for W t’s. More explicitly, if t1 and t2 are in

close proximity to each other (according to a predefined range),

then W t1 and W t2 should also be close to each other. To enforce

similarity between adjacentW t’s, we also include the following

term

Figure 7. Temporal profiles of PDPK1, FOXO4, and TNF family involved in activation and inhibition of NFkB. Dash red-lines correspond
to adaptive response.
doi:10.1371/journal.pone.0042306.g007

Figure 8. Illustration of the sliding window regression.
doi:10.1371/journal.pone.0042306.g008

Causal Network from Time-Varying Transcriptome
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min
XT{1

i,j~1
cij W

i { W
j

�� ��2

F
:

Here, c
ij

is an indicating factor that determines whether i and j are

close to each other: if so, c
ij

should be a positive number, enforcing

the closeness between W
i and W j in the above minimization

term; otherwise cij will be zero, indicating no constraints on W i

and W j if i and j are far away. In practice, one can have either a

hard indicator,

cij~
1, Di{jDvdecay

0, Di{jDwdecay

�
,

or a soft indicator,

cij~ e
{

(i{j)2

h2 :

(iii) The coefficient matrices are sparse.

We note that the matrix W t uniquely specifies a directed graph,

where each node is a gene group and the edge weights indicate the

interaction between the groups. However, only a subset of genes is

active at any time point, which means that the network structure is

sparse, i.e., only a small portion of the node pairs have interactions

with each other. The notion of sparsity can be enforced via

penalizing the l1-norm of the coefficient matrix, as

min
XT{1

t~1
DW tD1:

This is typically known as sparse constraint. In recent years, it has

been applied extensively in signal processing, image reconstruc-

tion, and model selection [40,41].

By combining the three terms, we have the following

optimization problem

min
Wt [RK|K

t~1,2,:::,T{1

XT{1

t~1
P

(tz1)
D { W

t
P

(t)
D

��� ���2

F
z

l1

XT{1

i,j~1
cij W

i { W
j

�� ��2

F
zl2

XT{1

t~1
W

tj j1

Here, l1 and l2 are positive regularization parameters that control

the balance between the loss term, the temporal smoothness term,

and the sparsity of solutions.

Using multiple replicates for regression
As we previously indicated, a critical issue is the low sample size

given the high dimensionality of the parameter space. Thus, to

improve robustness and stability of the solution, we adopt the

policy of using individual transcripts as replicates as they have

similar signatures within a clustered group. In practice, one can

compute a representative expression profile vi for the i-th group of

genes, as discussed. However, in some cases, genes in the same

cluster still have a certain level of variation, and using their

average pattern for regression might lead to loss of information.

To solve this problem and be able to fully utilize available patterns,

we randomly sample genes from each group as the representative

vi to form the data matrix (1); we then repeat this process and

create an altogether N data matrices; each data matrix will lead to

one objective term, as specified in (4). We will then sum up the

objective terms associated with all the data matrices as the ultimate

objective function. We can sample as many times as needed, i.e.,

injecting more constraints to the optimization problem, using

certain heuristics for sampling. For example, given K groups and

nk genes for k-th group, then the total number of different data

matrices can be PK
k~1 nk.

Optimization protocol
There are two ways to obtain the solution: (i) concatenate the

columns of each W t as a K2-by-1 vector, and concatenate the T-1

matrices to form a K2 (T{1)-by-1 vector as the variable. The

whole objective function can be transformed to a standard

quadratic programming problem with a sparsity constraint, which

can then be transformed into a l1-regularized least-square problem

for which many advanced solvers are available; or (ii) the block

coordinate descent method can be incorporated. Instead of

computing all the variables at one time, we update one W t

matrix at a time while fixing all other W i’s (i=t). The first

approach requires larger memory due to the need to manipulate

the K2 (T{1)-by-K2 (T{1) Hessian matrix. In practice, when K

is very large, we apply the Nystrom low-rank approximation by

sampling only a subset of the rows/columns of the Hessian matrix.

This allows us to maintain enough energy in the eigen-spectrum in

the reconstructed Hessian. The second approach is more memory

efficient, but may require many cycling updates to converge.

Selection of regularization parameters
The evaluation of regularization parameters fl1,l2g is based on

Bayesian information criterion (BIC). Similar to Ahmed and Xing

[42], we define the BIC as

BIC l1,l2ð Þ)~n ln( s2 )zd ln(n)

Where n~
PT

t~1 Nt, s2 ~
1

n{1

XT{1

t~1
P

(tz1)
D { W

t
P

(t)
D

��� ���2

F
,

and d~
PT{1

t~1

P
i,j I ½W t

ij =0, W t{1
ij ~0�. We chose l1,l2f g,

which gives the smallest BIC from the candidate models.

Validation with the synthetic data
We validated the network inference against a set of synthetic

data. In the example, shown in Figure S6, the network consists of

k = 9 nodes with T = 4 time-varying states. The transition matrices,

W t with t = 1,2,..,T, is designed as sparse k-by-k matrices with

roughly 10% non-zero entries in the range of [21,+1]. Further-

more, adjacent matrices are designed to be similar with random

perturbation of 10 entries in W t and replacing them in W tz1 with

t = 1,2,..,T. This is the same policy, used in [42], by collecting

samples from each state and adding random noise proportional to

the 10% of the signal.

Comparison with related methods
With respect to network recovery, Ahmed and Xing [42]

proposed to recover the network in social and biological studies by

a temporally smoothed, l1-regularized logistic regression formal-

ism. Promising results were reported on reverse engineering of the

latent sequence of temporally rewiring political and academic

social networks, and the evolving gene networks during the life

cycle of Drosophila melanogaster. However, there are several

differences between our method and theirs: (i) the loss function in

our formulation integrates the error term between the actual and

reconstructed gene expression value over multiple time frames in a

sliding-window, while in [42] the loss term for each time t is the

Causal Network from Time-Varying Transcriptome
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log-likelihood of the model at time t; (ii) [42] only considers the

closeness between W t’s of directly adjacent time frames, while we

can control the clones of all W i’s with a flexible decaying function to

adjust the weight that is highly desired in cases of limited training

data; (iii) we perform a pre-clustering step to reduce the number of

parameters, which also allows us to generate a large number of

‘‘pseudo-samples’’ (data matrices) by sampling from each group. In

summary, we have improved the stability of inference by

incorporating the pre-clustering step. An alternative approach

includes Bayesian techniques, where the notion of sparsity is often

enforced by specifying the prior distribution for the graph that

panelizes the number of edges. While Bayesian methods have been

shown to infer biological networks [43,44], they (i) are generally

greedy in terms of structure inference, and when coupled with

advanced MCMC methods to reduce local trapping among possible

structures [45], they are compute intensive; (ii) have limitations in

terms of inference of feedback loops since network inference is a feed

forward action (e.g., network is acyclic) [46]; and (iii) can infer edges

based on probabilistic values, and as a result the notion of excitatory

and/or inhibitory (e.g., positive and negative edges), they are lost.

The main pitfalls are that the number of templates, during the pre-

clustering stage, may alter the topology of the causal network, and

network inference may be sensitive to a small sample size. The latter

is a shortcoming that persists in most systems that infer structures

from the data. A potential improvement includes further regular-

ization by incorporating prior knowledge (e.g., KEGG, HPRD) to

enforce locality and consistency with the published literature.

Supporting Information

Figure S1 Visualization of the consensus matrix of
N = 2,3,…,9 clusters for the adaptive dose.
(TIF)

Figure S2 Consensus CDF for the consensus matrix of
N = 2,3,…,9 clusters for the adaptive dose as shown in
Figure S1.

(TIF)

Figure S3 Visualization of the consensus matrix of
N = 2,3,…,9 clusters for the adaptive dose.

(TIF)

Figure S4 Consensus CDF for the consensus matrix of
N = 2,3,…,9 clusters for the challenge dose as shown in
Figure S3.

(TIF)

Figure S5 NUSE (Normalized Unscaled Standard Error)
plot of the microarray data.

(TIF)

Figure S6 An example of validation data in the top row
with positive (red) and negative (green) values in the
transition matrices. The bottom row shows inferred matrices

through application of the computational method.

(TIF)

Text S1 Quality control for microarray data.

(DOCX)

Text S2 Selection of the number of clusters from
consensus clustering.

(DOCX)

Author Contributions

Conceived and designed the experiments: BP. Performed the experiments:

KZ JH TG. Analyzed the data: KZ JH GF BP. Wrote the paper: KZ JH

BP.

References

1. Barabasi A, Oltvai Z (2004) Network biology: understanding the cell’s functional

organization. Nature Review Genetics 5: 101–103.

2. Fauer A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of generic

Boolean model for control of mammalian cell cycle. Bioinformatics 22: 124–131.

3. McAdams H, Arkin A (1997) Stochastic mechanisms in gene expression.

Proceedings of National Academy of Science 94: 814–819.

4. Cinquermani E, Millias-Argetitis A, Summers S, Lygeros J (2008) Stochastic

dynamics of genetic networks. Bioinformatics 24: 2748–2754.

5. Chaouiya C (2007) Petri Net modeling of biological networks Briefings in

Bioinformatics 8: 210–219.

6. Li S, Brazhnik P, Sobral B, Tyson J (2008) A quantitative study of the division of

the cell cycle of Caulobacter Crescentus Stalked cells. PLoS Computational

Biology 4.

7. Edwards J, Ibarra R, Palsson B (2001) In Silico predictions of Escherichia Coli

Metabolic capabilities are consistent with experimental data. Nature Biotechno-

logyu 19: 125–130.

8. Karlebach G, Shamir R (2008) Modeling and analysis of gene regulatory

networks. Nature Reviews in Molecular and Cell Biology 9: 770–780.

9. Tenazinha N, Vinga S (2011) A survery of methods for modeling and analyzing

integrated biological networks. IEEE Transactions on Computational Biology

and Bioinformatics 8: 943–958.

10. Tanya K, Hooker A, Zeng G, Sykes P (2007) Low dose X-radiation adaptive

response in spleen and prostate of Atm knockout heterozygous mice.

International Journal of Radiation Biology 83: 523–534

11. Prise K (2006) New advances in radiation biology. Occupational Medicine 56:

156–161.

12. Tapio S, Jacob V (2007) Radiaoadpative response revisited. Radiation

Environment Biophysics 46: 1–12.

13. Nevins J (1988) Toward an understanding of the functional complexity of the

E2F and Retinoblastoma families. Cell Growth and Differentiation 9: 585–593.

14. Worku D, Jouhra F, Jiang G, Patani N, Newbold R, et al. (2008) Evidence of a

tumor suppressive function of E2F1 gene in human breast cancer. Anticancer

Research 28: 2135–2140.

15. Lin W, Lin F, Nevins J (2011) Selective induction of E2F1 in response to DNA

damage, mediated by ATM-dependent phosphorylation. Genes and Develop-

ment 15: 1833–1844.

16. Barcellos-Hoff M (2005) How tissues respond to damage at the cellular level:
Orchestration by transforming growth factor- beta (TGF-b). BJR Suppl27: 123–

127.

17. Voy B, Scharff J, Perkins A, Saxton A, Borate B, et al. (2006) Extracting gene

networks for low-dose radiation using graph theoretical algorithms. PLoS
Computational Biology 2(7): e89.

18. Wichselbaum R, Hallhan D, Fuks Z, Kufe D (1994) Radiation induction of
immediate early genes: effectors of the radiation-stress response. Int J Radiation

Oncology Biol Phys 30: 229–234.

19. Yang J, Xia W, HU M (2006) Ionizing radiation activates expression of

FOXO3a, Fas Ligand, Bim, and induces cell apoptosis. International Journal of
Oncology 29: 643–648.

20. Thiel G, Cibelli G (2002) Regulation of life and death by the Zinc finger
transcription factor Egr-1. Cellular Physiology 193: 287–292.

21. Greer E, Brunet A (2008) FOXO transcription factors in ageing and cancer.
Acta Physiol 192: 19–28.

22. Accili D, Arden K (2004) FoxOs at the crossroads of cellular metabolism,

differentiation, and transformation. Cell 117: 421–426.

23. Burgering B, Kpos G (2002) Cell cycle and death control: long live Forkheads.

Trends Biochem Sci 27: 352–360.

24. Roy L, Gruel G, Vaurijoux A (2009) Cell responses to ionising radiation

analyzed by gene expression patterns. Ann Ist Super Sanita 45: 272–277.

25. Turtoi A, Brown I, Oskamp D, Schneeweiss F (2008) Early gene expression in

human lymphocytes after gamma irradiation-a genetic pattern with potential
biodosimetry. Int J Radiation Biology 84: 375–387.

26. Pearl J (2000) Causality: Models, reasoning and inference: Cambridge university
Press.

27. Robin JM, Wasserman L, editors (1999) On the impossibility of of inferring

causation from association without background knowledge. Menlo Park, Ca:

AAAI Press/MIT Press. 305–321 p.

28. Das A, Chendil D, Dey S, Mohiuddin M, Mohiuddin M, et al. (2001) Ionizing

Radiation Down-regulates p53 Protein in Primary Egr-12/2 Mouse Embryonic
Fibroblast Cells Causing Enhanced Resistance to Apoptosis. Biological

Chemistry 276: 3279–3286.

29. McBride W, Pajonk F, Chiang C, Sun J (2002) NF-kappa B, cytokines,

proteasomes, and low-dose radiation exposure. Mil Med 167: 66–67.

30. Pervan M, Iwamoto K, McBride W (2005) Proteasome structure affected by
ionizing radiation. Mol Cancer Res 3: 381–390.

Causal Network from Time-Varying Transcriptome

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e42306



31. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains.

Experimental cell research 37: 614–636.
32. Hayflick L, Moorhead P (1961) The serial cultivation of human diploid cell

strains. Experimental cell research 25: 585–621.

33. Groesser T, Chang H, Fontenay G, Chen J, Costes S, et al. (2011) Persistent of
gamma-H2AX and 53BP1 fori in proliferating and non-proliferating human

mammary epithelial cells after exposure to gamma-rays or iron ions.
International Journal of Radiation Research 87: 696–710.

34. Han J, Chang H, Yang Q, Fontenay G, Groesser T, et al. (2010) Multiscale

iterative voting for differential analysis of stress response for 2D and 3D cell
culure models. Microscopy 241: 315–326.

35. Molller-Levet C, Chu K, Wolkenhauer O (2003) DNA microarray data
clustering based on temporal variation: Fcv with tcd preclustering. Bioinofor-

matics 19: 834–841.
36. Ramoni M, Sebastiani P, Kohane P (2002) Cluster analysis of gene expression

dynamics. PNAS 99: 9121–9126.

37. Luan Y, Li H (2003) Clustering of time-couse gene expression data using mixed
effects model with B-spline. Bioinformatics 19: 474–482.

38. Celeux G, Martin O, Lavergne C (2005) Mixture of linear models for clustering
gene expression profiles from repeated microarray experiments. Statistical

modeling 5: 243–267.

39. Monti S, Tamayo P, Mesirov J, Golub TR (2003) Consensus clustering: a

resampling-based method for class discovery and visualization of gene expression

microarray data. Mach Learn 52: 91–118.

40. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal

Statist Soc B 58: 267–288.

41. Donoho D (2006) Compressed sensing. IEEE Trans on Information Theory 52:

1289–1306.

42. Ahmed A, Xing EP (2009) Recovering time-varying networks of dependencies in

social and biological studies. PNAS 106: 11878–11883.

43. Ellis B, Wong WH (2008) Learning causal Bayesian network structures from

experimental data. American Statistical Association 103: 778–789.

44. Hill SM, Neve RM, Bayani N, Kuo W-L, Ziyad S, et al. (2012) Integrated

biological knowledge into variable selection: an emprical Bayes approach with

an application in cancer biology. BMC Bioinformatics 13: 94.

45. Kou S, Zhou Q, Wong WH (2006) Equi-energy sampler: Applications in

statistical inference and satistical mechanics. The annals of Statistics 34: 1581–

1619.

46. Henao R, Winther O (2009) Bayesian sparse factor models and DAGs inference

and comparison;. pp. 736–744.

Causal Network from Time-Varying Transcriptome

PLOS ONE | www.plosone.org 11 August 2012 | Volume 7 | Issue 8 | e42306


