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ABSTRACT
In this paper, we present a novel active contour model, in which
the traditional gradient descent optimization is replaced by graph
cut optimization. The basic idea is to first define an energy func-
tion according to curve evolution and then construct a graph with
well selected edge weights based on the objective energy function,
which is further optimized via graph cut algorithm. In this fashion,
our model shares advantages of both level set method and graph cut
algorithm, which are “topological” invariance, computational effi-
ciency, and immunity to being stuck in the local minima. The model
is validated on synthetic images, applied to two-class segmentation
problem, and compared with the traditional active contour to demon-
strate effectiveness of the technique. Finally, the method is applied to
samples imaged with transmission electron microscopy that demon-
strate complex textured patterns corresponding subcellular regions
and micro-anatomy.

1. INTRODUCTION

Images corresponding to natural scenes and certain class of scientific
data are often complex requiring methods for automated or semi-
automated annotation for subsequent indexing, mining, and compar-
ative analysis. In this paper, we’ll couple the active contour models
and graph cut optimization method in a complementary fashion to
demonstrate a superior performance. One motivation for the devel-
opment of the method is based on segmentation of the specimen im-
aged with transmission electron microscopy displaying complex tex-
tured patterns corresponding to organelle and various complexes. It
is important to delineate and characterize these structures as a func-
tion of different experimental variables. Given the image complexi-
ties and required reliability, we have opted for a trainable system for
partitioning an image into distinct regions.

The active contour model evolves a front toward the desired
object boundary based on local and global shape constraints and
forces that reside in the image. It is an application of Differential
Geometry[12], first introduced as “snakes” within the Lagrangian
framework and the “level set” within the Eulerian framework (e.g.,
implicit representation for active contours) [9, 13]. The level set for-
mulation allows for control over topological changes such as merg-
ing or splitting of fronts. The “geodesic active contour model”[20, 1]
transformed the image segmentation problem into a geodesic com-
putation in a Riemannian space, according to a metric induced by
the image. These methods leverage the gradient information as a
constraint for terminating the curve evolution; thus, segmenting the
image into distinct regions. These techniques may often have un-
desirable effects of uncontrolled leakage as a result of perceptual
boundaries. Chan and Vese [3] developed an active contour model
without edges that solve for an equilibrium state for regions inside
and outside of the front. Their method has been extended to textured
images [15]. The main limitation is in the initialization, which may
not lead to globally consistent labeling.

Graph cut was first proposed by Greig et al.[6] in the context
of max-flow/min-cut algorithms (graph cut algorithms) in the con-
text of combinatorial optimization for minimizing an energy func-
tion. Graph cut algorithm [22, 16, 8, 10] has emerged as an increas-
ingly useful method for energy minimization in early vision, where
maximum-flow/minimum-cut theory[5] has addressed problems in
segmentation[14, 11, 21], restoration[22] and stereo reconstruction[18,
19]. The advantage of the graph cut approach is efficient optimiza-
tion of the energy function. Its disadvantage is in generating notice-
able geometric artifacts, known as metrication errors, as a result of
the discrete topology of graphs.

The combination of active contour and graph cut was first pro-
posed in[2], in which the geodesic active contours and graph cuts
were unified. The authors pointed out that with a large enough neigh-
borhood system and specifically selected edge weights, based on that
neighborhood system, the cost of the cuts on the image grid would
approximate to the Euclidean length of the segmented object bound-
ary.

In this paper, we propose an new active contour model which
unifies Chan and Vese’s active contour model[3] and graph cut al-
gorithm. This model combines advantages of ”topologically” free
front evolution, globally optimization, and reduces the sensitivity
to initialization. The rest of this paper is organized as follows: In
2, the Chan and Vese’s model and the graph cut method is sum-
marized. Section3, provides the details of our approach. Section4,
effectiveness of the proposed method against the traditional level set
approach is demonstrated. Additionally, we show the performance
of our method on complex samples that are imaged with transmis-
sion electron microscope. Section5 concludes the paper.

2. RELATED WORK

2.1. Active Contour Model

The active contour models are widely used for image segmentation.
In the Chan and Vese’s model[3], the energy functionalF (c1, c2, C)
is defined as

F (c1, c2, C) = µ · Length(C) + v · Area(inside(C))
+ λ1

R
inside(C)

|u0(x, y) − c1|2dxdy

+ λ2

R
outside(C)

|u0(x, y) − c2|2dxdy

(1)
whereu0 corresponds to the image,c1 and c2 are the mean fore-
ground and mean background intensity at a specific iteration, and
µ ≥ 0, v ≥ 0, λ1, λ2 ≥ 0 are fixed parameters. The level set
formulation of this model is given by consideringC ⊂ Ω as the
zero level set of a Lipschitz functionφ : Ω → R, in which Ω is a
bounded open subset ofR

2. Using the Heaviside functionH, and
the one-dimensional Dirac measureδ0, defined by
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dz
(2)



The curve evolution front,φ, can be written as:
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The level set evolves based on gradient decent method, which makes
the active contour models sensitive to initialization.

2.2. Graph Cut Method

Graph cut is a powerful tool for energy minimization. In the context
of segmentation, it is a binary labeling approach based on the graph
G = 〈V̄ , Ē〉 constructed from the image, wherēV is the set of all
nodes andĒ is the set of all arcs connecting adjacent nodes. Usu-
ally, the nodes are pixels in the image and arcs are adjacency rela-
tionships with four or eight connections between neighboring pixels.
Additionally, there are special nodes, referred to as terminals, in the
graph structure, where terminals correspond to the set of labels that
can be assigned to pixels. In the case of a graph with two terminals,
terminals are referred to as the source(S) and the sink(T). Then the
labeling problem is to assign an unique labelxp (0 for background
and 1 for foreground ) for each nodep ∈ V̄ and the image cutout is
performed by minimizing the Gibbs energyE(X) [17]:

E =
X
p∈V̄

E1(xp) +
X

(p,q)∈Ē

E2(xp, xq) (4)

WhereE1(xp) is the likelihood energy, encoding the fitness cost for
assigningxp to p, andE2(xp, xq) is the prior energy, denoting the
cost when the labels of adjacent nodesp andq arexp andxq re-
spectively. There are polynomial algorithms for the optimization on
directed weighted graphs with two terminals. Basically, these algo-
rithms could be classified into two groups: Goldberg-Tarjan style
“push-relabel” methods[7] and Ford-Fulkerson style “augmenting
paths” [5] . The details of the two methods could be found in[4].

3. APPROACH

We focus on the two-class segmentation problem to show that equa-
tion 4 can approximate evolution of a front represented as level set.
Let C be the curve,uk(p) be thekth feature,pk

F be the probability
function of thekth feature of foreground andpk

B be the probability
function of thekth feature of background. The energy function to
be minimized is defined as follows:

E = µ · Length(C) + v · Area(inside(C))

−
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k
B

Z
Background

log p
K
B (uk(p))dp (5)

in which, u,v,λk
F andλk

B are fixed parameters. Letφ(p) > 0 if
p ∈ Foreground, andφ(p) < 0 if p ∈ Background. Then the
above energy function can be formulated as,

E = µ

Z
Ω

| ∇H(φ(p)) | dp + v

Z
Ω

H(φ(p))dp

−
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k
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log p
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−
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B (uk(p)) · (1 − H(φ(p)))dp (6)
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Fig. 1. (a)an 8-neighborhood configuration on a 2D grid, and (b) one
family of lines on the grid.

The Euler-Lagrange equation forφ can be written as:

∂tφ = δ ·
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However, gradient descent greatly relies on the initialization and
cannot guarantee global convergence, but the graph cut method can.
Assume thatxp = H(φ(p)), so thatxp ∈ {0, 1}, xp = 1, if
p ∈ Foreground andxp = 0, if p ∈ Background. Based on
a discrete graph grid, the objective energy function can be written
as:

E = µ · Length(C) + v
X

p

xp
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in which, p is treated as the node of the graph. To optimize the
active contour model mentioned above via graph cut, another im-
portant aspect is to choose the n-link (link between nodes) of the
graph model and to approximate the Euclidean length ofC(| C |ǫ).
For an 8-connected neighborhood system, as shown in Figure1, [2]
demonstrates that:

| C |ǫ≈
X

k

nc(k) · δ2 · △φk

2· | ek | (9)

wherenc(k) is the number of intersections of the curveC with the
kth family of edge-lines,δ is the cell-size of the grid,| ek | is the
Euclidean length of vectorek, and△φk is the angular differences
between thekth and(k + 1)th edge lines:△φk = φk+1 − φk. It
is clear that selection of constant edge weights within each family of
edge lines as

wk =
δ2 · △φk

2· | ek |
will produce a Euclidean length ofC that can be approximated by
the cut length in the graph grid. For an 8-neighborhood system, the
edge-weights of the graph are set as follows:

With the edge weights defined above, we construct a classi-
cal two-terminal graph, and apply the graph cut algorithm describe
in[21] to solve the optimization problem.



(a) (b) (c)

Fig. 2. Segmentation results for synthetic texture (top row), color animated image(middle row), and natural image with complex color and
texture (bottom row): (a) original image with user specified seeds, (b) segmentation with the level set method, and (c) segmentation with the
proposed method.

(a) (b) (c)

Fig. 3. Segmentation results for samples imaged through transmission electron microscopy with the trained regions (top row) and automated
labeling (bottom row): (a) 70nm thick section through a zebrafish notochord, (b) 1nm thin slice through 3D tomographic volume of frog
sensory epithelia hair bundle stereocilia, and ( c) 70nm thick section of Arabidopsis hypocotyl tissue.



Edge Weight For

p → S v −P
k

λk
F log pk

F (uk(p)) p ∈ G

p → T −P
k

λk
B log pk

B(uk(p)) p ∈ G

e{p,q}
π
8T

, T ∈ {1,
√

2} {p, q} ∈ N

Table 1. Edge weights for the graph construction,G is the graph,N
is the neighborhood system.

4. EXPERIMENTAL RESULTS

Image Size Feature Type T1 T2

Cat 350×209 Color 10.2s 2.3s
Texture 319×158 Texture 3.3s 2.7s
Zebras 481×321 Both 99.6s 80.8s

Table 2. Computational time for the traditional level set (T1) and
our method (T2).

We have applied our approach to the two-class image segmen-
tation problem, in which both color and texture features could be
incorporated. The color features are represented in(RGB) domain,
and texture features are extracted by gabor filter bank. Taking the
user specified foreground and background samples as input, we es-
tablish four (or two, if only color or texture is considered) Gaus-
sian Mixture Models (GMM ) to model the distributions of fore-
ground color, background color, foreground texture and background
texture, which are represented asGMM1

F , GMM1
B , GMM2

F and
GMM2

B , respectively. In this way, we have

p
k
F =

GMMk
F

GMMk
F + GMMk

B

; pk
B =

GMMk
B

GMMk
F + GMMk

B

; k = 1, 2

We consider each pixel in the image as a node and construct the
graph according to Table 1.

Figure 2 shows labeling results on real and synthetic images and
comparison of these results with the traditional level set method. It is
clear that the proposed method reduces fragmentation. Furthermore,
Table 2 indicates that the computational complexity of our method
is comparable to the traditional level set method. This is because the
traditional level set is iterative, while graph cut is not. Figure 3 in-
dicates performance of the method on samples that are imaged with
transmission electron microscopy. Note that the images are generally
noisy and different components of the micro-anatomy have unique
textures. Again, the system has enabled segmentation as a precursor
for detailed morphological analysis.

5. CONCLUSION

In this paper, we have proposed a new active contour model which
unifies Chan and Vese’s model and the graph cut algorithm. In this
way, our model shares advantages of both two standard segmenta-
tion approaches, which are “topologically” free, computational ef-
ficiency, and immunity to local minimum through the energy mini-
mization approach. These advantages are ensured by intrinsic prop-
erties of level set method and graph cut algorithm and are further
demonstrated by some comparisons of experimental results between
our approach and the traditional level set method.
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