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ABSTRACT Graph cut was first proposed by Greig et al.[6] in the context
In this paper, we present a novel active contour model, in whictf max-flow/min-cut algorithms (graph cut algorithms) in the con-
the traditional gradient descent optimization is replaced by grapkext of combinatorial optimization for minimizing an energy func-
cut optimization. The basic idea is to first define an energy function. Graph cut algorithm [22, 16, 8, 10] has emerged as an increas-
tion according to curve evolution and then construct a graph witingly useful method for energy minimization in early vision, where
well selected edge weights based on the objective energy functiofyaximum-flow/minimum-cut theory[5] has addressed problems in
which is further optimized via graph cut algorithm. In this fashion, Segmentation[14, 11, 21], restoration[22] and stereo reconstr{i8ion
our model shares advantages of both level set method and graph &ftl: The advantage of the graph cut approach is efficient optimiza-
algorithm, which are “topological” invariance, computational effi- tion of the energy function. Its disadvantage is in generating notice-
ciency, and immunity to being stuck in the local minima. The modelable geometric artifacts, known as metrication errors, as a result of
is validated on synthetic images, applied to two-class segmentatidh€ discrete topology of graphs. _
problem, and compared with the traditional active contour to demon-  The combination of active contour and graph cut was first pro-
strate effectiveness of the technique. Finally, the method is applied t@0sed in[2], in which the geodesic active contours and graph cuts
samples imaged with transmission electron microscopy that demontere unified. The authors pointed out that with a large enough neigh-

strate complex textured patterns corresponding subcellular regiof¥®rhood system and specifically selected edge weights, based on that
and micro-anatomy. neighborhood system, the cost of the cuts on the image grid would

approximate to the Euclidean length of the segmented object bound-
ary.

In this paper, we propose an new active contour model which
eifies Chan and Vese’s active contour model[3] and graph cut al-

1. INTRODUCTION

Images corresponding to natural scenes and certain class of scientif{g"" X . N . "
data are often complex requiring methods for automated or sem orithm. Th's model Comb'ﬂe.s advantages of topologlcally. frge
automated annotation for subsequent indexing, mining, and compalr-o.nt. gv_olut!on, globally optlm_lzatlon, "’?”d redu_ces the sen5|t|'v|ty
ative analysis. In this paper, we’'ll couple the active contour modeléz0 initialization. The re§t of this paper is organized as foIIovys. In
and graph cut optimization method in a complementary fashion tG’ the Chan a.nd Veses.model and the graph cut method is sum-
demonstrate a superior performance. One motivation for the devemar'z_ed' Section3, provides the details O.f our approa_u_:h. Sectiond,
opment of the method is based on segmentation of the specimen "ﬁﬁectlvengss of the proposed m‘?t.h"d against the traditional level set
aged with transmission electron microscopy displaying complex texgpproach is demonstrated. Additionally, we g,how the performan_ce
tured patterns corresponding to organelle and various complexes.cf{ our method on complex Sa”.‘p'es that are imaged with transmis-
is important to delineate and characterize these structures as a furton electron microscope. Section5 concludes the paper.
tion of different experimental variables. Given the image complexi-
ties and required reliability, we have opted for a trainable system for 2. RELATED WORK
partitioning an image into distinct regions.

The active contour model evolves a front toward the desired-1. Active Contour Model
object boundary based on local and global shape constraints an[q'
forces that reside in the image. It is an application of Differential
Geometry[12], first introduced as “snhakes” within the Lagrangian.
framework and the “level set” within the Eulerian framework (e.g.,
implicit representation for active contours) [9, 13]. The level setfor  F(ci,c2,C) = - Length(C) + v - Area(inside(C'))
mulation allows for control over topological changes such as merg- + A\ inside(C) luo(x,y) — c1)*dady
ing or splitting of fronts. The “geodesic active contour model’[20, 1] + A foutside(C) luo(z,y) — c2|2dady
transformed the image segmentation problem into a geodesic com- 1)
puta_tion in a Riemannian space, according to a m(_etric indgced bRX/hereuo corresponds to the image; and ¢, are the mean fore-
the image. These methods leverage the gradient information asg

e active contour models are widely used for image segmentation.
In the Chan and Vese’s model[3], the energy functidigd:, c2, C)
is defined as

; - . ) ound and mean background intensity at a specific iteration, and
constraint for terminating the curve evolution; thus, segmenting the, - 0, v > 0, A1, A2 > 0 are fixed parameters. The level set
image into distinct regions. These techniques may often have unz . 1ation of this model is given by consideri@ C Q as the

desirable effects of uncontrolled leakage as a result of perceptuglq |evel set of a Lipschitz function : © — R, in whichQ is a
boundaries. Chan and Vese [3] developed an active contour modg[,nqed open subset B?. Using the Heaviside functiof, and
without edges that solve for an equilibrium state for regions inside(he one-dimensional Dirac measuig defined by '

and outside of the front. Their method has been extended to textured

images [15]. The main limitation is in the initialization, which may 1, ifz>0 dH (z)

not lead to globally consistent labeling. H(z) = { 0, ifz<0 o(2) = dz 2)




The curve evolution frontp, can be written as:

2.2. Graph Cut Method
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Graph cut is a powerful tool for energy minimization. In the context
of segmentation, it is a binary labeling approach based on the grap /
G = (V, E) constructed from the image, whe¥eis the set of all
nodes and¥ is the set of all arcs connecting adjacent nodes. Usu- @) (b)

ally, the nodes are pixels in the image and arcs are adjacency rela- . ) . .

tionships with four or eight connections between neighboring pixelsé'g'_l' (a)gn 8-ne|ghbor_hood configuration on a 2D grid, and (b) one
Additionally, there are special nodes, referred to as terminals, in tht?Imlly of lines on the grid.

graph structure, where terminals correspond to the set of labels that

can be assigned to pixels. In the case of a graph with two terminalsf.he Euler-
terminals are referred to as the source(S) and the sink(T). Then the

labeling problem is to assign an unique labgl(0 for background N ot (uk)k’} )
and 1 for foreground ) for each nogec V and the image cutout is 0 =4 - (Z log 5 i T pdiv Yol U)
performed by minimizing the Gibbs enerdy( X) [17]: o Ppuk)ts Vel
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Lagrange equation fgrcan be written as:

@)

However, gradient descent greatly relies on the initialization and
b= Z Er(p) + Z Ea(xp, zq) 4) cannot guarantee global convergence, but the graph cut method ca
peV (p.a)€E Assume thatr, = H(¢(p)), so thatz, € {0,1}, z, = 1, if
WhereE, (z,) is the likelihood energy, encoding the fitness cost forp € Foreground andz, = 0, if p € Background. Based on
assigningr,, to p, and E»(x,, x4) is the prior energy, denoting the a discrete graph grid, the objective energy function can be written
cost when the labels of adjacent nogeandq arez, andx, re-  as:
spectively. There are polynomial algorithms for the optimization on

directed weighted graphs with two terminals. Basically, these algo- E = p-Length(C) +v Z Tp
rithms could be classified into two groups: Goldberg-Tarjan style P
“push-relabel” methods[7] and Ford-Fulkerson style “augmenting N & 5k
paths” [5] . The details of the two methods could be found in[4]. - Z AF Z log p(u” (p)) - zp
k=1 P
N

> APPROACH C Y e ) (-2 @
We focus on the two-class segmentation problem to show that equa- k=1 p
tion 4 can approximate evolution of a front represented as level sein which, p is treated as the node of the graph. To optimize the
Let C be the curvey” (p) be thek feature p} be the probability  active contour model mentioned above via graph cut, another im-
function of thek"" feature of foreground angf;; be the probability  portant aspect is to choose the n-link (link between nodes) of the
function of thek®" feature of background. The energy function to graph model and to approximate the Euclidean lengtt'@fC |.).

be minimized is defined as follows: For an 8-connected neighborhood system, as shown in Figurel, [2]
E = p-Length(C)+v - Area(inside(C)) demonstrates that:
AN
Cle= ) ne(k) - 55— 9)
- /\’%/ log pr (u” (p))dp 1Cl Zk: )3 | ex |
Foreground

wheren. (k) is the number of intersections of the cur@ewith the
A’%/ log pis (u” (p))dp (5) Kt family of edge-lines/ is the cell-size of the grid, e | is the
Background Euclidean length of vectog,, and A¢y is the angular differences
) _ X . ) _ between thé:'" and(k + 1)'" edge lines:A¢r = drr1 — b It
in which, u,v,\% and \j; are fixed parameters. Let(p) > 0if s clear that selection of constant edge weights within each family of
p € Foreground, andé(p) < 0if p € Background. Thenthe  edge lines as

above energy function can be formulated as,

1= 1=

x>
1

1
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B = u[ |VHG) dp+v [ HE@) 2 Ter ]

Q Q
N will produce a Euclidean length @ that can be approximated by
_ PL: / log & (u* H d the cut length in the graph grid. For an 8-neighborhood system, the

; e Q og i (' (p) - H(9(p))dp edge-weights of the graph are set as follows:
N With the edge weights defined above, we construct a classi-

_ I\ / loe n (uF (1-H d 6 cal two-terminal graph, and apply the graph cut algorithm describe
; s Q og s (u(p)) - ( (¢(e))dp (6) in[21] to solve the optimization problem.



Fig. 2. Segmentation results for synthetic texture (top row), color animated ifmaigelle row), and natural image with complex color and
texture (bottom row): (a) original image with user specified seedsggnentation with the level set method, and (c) segmentation with the
proposed method.

@ (b) ()

Fig. 3. Segmentation results for samples imaged through transmission eledtrmscopy with the trained regions (top row) and automated
labeling (bottom row): (a) 70nm thick section through a zebrafish notdch{b) 1nm thin slice through 3D tomographic volume of frog
sensory epithelia hair bundle stereocilia, and ( ¢) 70nm thick section didapsis hypocotyl tissue.
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[2

Table 1. Edge weights for the graph constructiagnjs the graphN
. . 3]
is the neighborhood system.
[4]
4, EXPERIMENTAL RESULTS

(5]

Image Size Feature Type| Tu T
Cat | 350x200 Color 102s| 2.3s 6]
Texture | 319x158 Texture 3.3s | 2.7s
Zebras | 481x321 Both 99.6s| 80.8s

(71

Table 2. Computational time for the traditional level sét § and

our method T%). (8]

9

We have applied our approach to the two-class image segmen[ ]
tation problem, in which both color and texture features could b 10]
incorporated. The color features are representé@id B) domain,
and texture features are extracted by gabor filter bank. Taking the
user specified foreground and background samples as input, we g$y
tablish four (or two, if only color or texture is considered) Gaus-
sian Mixture Models GM M) to model the distributions of fore-
ground color, background color, foreground texture and backgto
texture, which are represented @3/ My, GM M3, GMM?% and
GM M}, respectively. In this way, we have

[12]
(13]
[14]

GMME

o GMMYE
GMME + GMME PP

GMME + GMME’

ph = k=1,2
We consider each pixel in the image as a node and construct !
graph according to Table 1.

Figure 2 shows labeling results on real and synthetic images and
comparison of these results with the traditional level set method. It ij;16
clear that the proposed method reduces fragmentation. Furthermore,
Table 2 indicates that the computational complexity of our method
is comparable to the traditional level set method. This is because t 7]
traditional level set is iterative, while graph cut is not. Figure 3 in-
dicates performance of the method on samples that are imaged with
transmission electron microscopy. Note that the images are generaI[IyS
noisy and different components of the micro-anatomy have unique
textures. Again, the system has enabled segmentation as a precursor
for detailed morphological analysis. [19]

5. CONCLUSION

[20]
In this paper, we have proposed a new active contour model which
unifies Chan and Vese’s model and the graph cut algorithm. In thig1]
way, our model shares advantages of both two standard segmenta-
tion approaches, which are “topologically” free, computational ef-
ficiency, and immunity to local minimum through the energy mini- [22]
mization approach. These advantages are ensured by intrinsic prop-
erties of level set method and graph cut algorithm and are further
demonstrated by some comparisons of experimental results between
our approach and the traditional level set method.
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